Функционирование холинергического синапса

Медиатор холинергического синапса - ацетилхолин -- синтезируется в; нервном окончании из ацетилкоэнзима-А и холина и накапливается в пузырьках [ у пресинаптической мембраны. Под действием нервного импульса пузырьки лопаются, и ацетилхолин высвобождается в синаптическую щель. Далее он по-средством диффузии достигает постсинаптической мембраны и возбуждает хо-линорецепторы, находящиеся на ней, что и обеспечивает контакт. В конечном итоге все выделенные в синаптическую щель молекулы ацетилхолина расщепля-ются до холина и уксусной кислоты при помощи специфического фермента -ацетилхолинэстераза, что прекращает активирующее действие медиатора на холинорецепторы. Активность ацетилхолинэстеразы настолько велика, что период полужизни ацетилхолина в синаптическои щели измеряется в миллисекундах.

Рецепторы ацетилхолина на постсинаптической мембране (холинорецепто-ры) неоднородны, они разделяются на два больших класса в зависимости от чув-ствительности к двум природным алкалоидам - мускарину и никотину. Выделяют М-холинорецепторы, которые специфически активируются мускарином и блокируются атропином, и Н-холинорецепторы, которые специфически активируются малыми концентрациями никотина и блокируются большими концентрациями никотина. Для понимания эффектов препаратов, влияющих на холинергические процессы, важно знать локализацию М- и Н-холинорецепторов в организме.

Основными участками локализации М-холинорецепторов являются нервные клетки ЦНС и постганглионарные нервные окончания парасимпатической нервной системы (миокард, гладкие мышцы, железы внешней секреции). Н-холинорецепторы находятся у окончаний преганглионарных волокон симпатической и парасимпатической нервных систем (в ганглиях), у нервных окончаний соматической нервной системы (в скелетных мышцах), в каротидных клубочках дуги аорты, мозговом слое надпочечников и в ЦНС.

Препараты, влияющие на холинергические процессы, могут быть разделены на два больших класса:

1) препараты, активирующие холинорецепторы, т.е. влияющие подобно са

мому ацетилхолину, и поэтому они называются холиномиметиками.

2) препараты, блокирующие холинорецепторы, т.е. препятствующие дейст

вию ацетилхолина, и они называются холиноблокаторами.

Каждый из этих классов может быть, в свою очередь, подразделен на сред-ства, влияющие только на М-холинорецепторы, влияющие только на Н-холинорецепторы и влияющие и на М- и на Н-холинорецепторы.

ХОЛИНОМИМЕТИКИ

Холиномиметические средства могут быть как прямого, так и непрямого действия. Холиномиметики прямого действия непосредственно соединяются с холинорецепторами и активируют их. Холиномиметики непрямого действия проявляют свое действие за счет угнетения активности ацетилхолинэстеразы. Ингибируя ацетилхолинэстеразу, непрямые холиномиметики, или антихолинэ-стеразные средства, повышают концентрацию эндогенного ацетилхолина в си-напсе, что и приводит к холиномиметическому действию.

Непрямые холиномиметики, или антихолинэстеразные вещества

К этой группе относятся прозерин, физостигмин, фосфакол, эдрофониум и др. Так как ацетилхолинэстераза имеется и у М- и у Н-холинорецепторов, анти-холинэстеразные (антиХЭ) препараты оказывают своё действие на оба типа ре-цепторов, т.е. являются непрямыми М- и Н-холиномиметиками. В связи с этим они имеют очень широкий спектр действия. Разберем основные эффекты этих препаратов на различные органы и системы.

Практически очень важным является влияние антиХЭ веществ на глаз, так как эти препараты используются при лечении глаукомы. Глаукома - это хроническое прогрессирующее заболевание глаз, основным проявлением которого является повышение внутриглазного давления, что может привести к необратимой слепоте. При закапывании в глаз антиХЭ вещества вызывают:

1) сужение зрачка - миоз - за счет активирования М-холинорецепторов

круговой мышцы радужки, вследствие чего происходит улучшение оттока внут

риглазной жидкости через дренажную систему в углу передней камеры глаза и

2) снижение внутриглазного давления;

3) спазм аккомодации, т.е. установление глаза на ближнюю точку лучшего

видения вследствие стимуляции М-холинорецепторов ресничной мышцы --* рас

слабления цинновой связки --> округления хрусталика.

АнтиХЭ препараты используются при атонии желудочно-кишечного тракта, особенно у послеоперационных больных, так как они повышают тонус и моторику ЖКТ. Повышение тонуса мочевого пузыря является причиной назначения подобных препаратов при задержках мочи, что тоже часто является послеоперационным осложнением. В обоих этих случаях важно до назначения антиХЭ препаратов удостовериться, что отсутствие стула или мочи не является результатом механического нарушения проходимости (заворот кишок, сдавливающая опухоль и т.п.), так как назначение антиХЭ препаратов в этих случаях может привести к разрыву органа в результате чрезмерного давления.

АнтиХЭ средства применяются при миастении - заболевании скелетной мускулатуры, проявляющемся в слабости в конечностях даже при небольшой нагрузке, боли в мышцах, иногда трудности в разговоре, глотании и даже дыха-нии. Причиной заболевания, как правило, является врожденный дефицит количества Н-холинорецепторов в нервно-мышечных синапсах. Назначение антиХЭ препаратов при миастении, с одной стороны, позволяет уточнить диагноз (терапия ex juvantibus), а с другой - облегчает состояние больных за счет повышения количества ацетилхолина, действующего на Н-холинорецепторы скелетных мышц.

АнтиХЭ препараты способны замедлять частоту сокращений сердца, что

может быть использовано при аритмиях, в частности при пароксизмальной

суправентрикулярной аритмии. В связи с появлением более специфических анти

аритмических препаратов это применение антиХЭ средств в настоящее время

является довольно редким. АнтиХЭ препараты в малых концентрациях оказывают стимулирующее влияние на ЦНС, а в больших и особенно токсических - угнетают ее функцию. Это приобретает особенное значение при отравлении ингибиторами ХЭ.

Токсикология антиХЭ средств имеет большое значение, поскольку препара-ты этого механизма действия довольно часто встречаются в быту в качестве ин-сектицидов (хлорофос, карбофос) или в сельском хозяйстве в качестве пестици-дов. Эти вещества чаще всего относятся в группу фосфорорганических соедине-ний (ФОС), которые обладают способностью необратимо угнетать ХЭ. Важной особенностью ФОС является их высокая липофильность, что делает их способ-ными хорошо всасываться с любых поверхностей тела человека, в том числе, через неповрежденную кожу.

Ранними симптомами отравления ФОС являются эффекты возбуждения М-холинорецепторов - миоз, слюнотечение, обильное потоотделение, брадикардия, бронхоспазм, псчос, тошнота и рвота. Возбуждение ЦНС быстро сменяется уг-нетением вплоть до комы и паралича дыхательного центра. Терапия отравлений включает в себя: 1) поддержание жизненно важных функций (дыхательная и сердечно-сосудистая системы), 2) прекращение дальнейшего всасывания яда. Эти мероприятия должны включать в себя не только многократные промывания желудка, но и удаление одежды и обмыв поверхностей тела, если отравление произошло через кожу с пылью или аэрозольным путем (очень часто в сельском хозяйстве), 3) назначение холиноблокаторов (атропина) до симптомов переатро-пинизации, 4) назначение реактиваторов холинэстеразы (дипироксим), которые способны восстановить активность ХЭ, если с момента отравления прошло не очень долгое время (несколько часов).

Прямые М -, Н-холиномиметики

В эту группу относятся ацетилхолин и некоторые его синтетические анало-ги. Ацетилхолин клинического значения не имеет, поскольку это энзиматически очень нестойкое вещество, но созданный на его основе препарат карбахолин обладает большим периодом полужизни, и применяют его чаще всего в глазной практике при глаукоме. Эффекты карбахолина при резорбтивном применении аналогичны таковым антиХЭ средств, но, как правило, менее выражены.

М-холиномиметики

Представителями этой группы препаратов являются пилокарпин и ацекли-дин. Препараты вызывают миоз, спазм аккомодации и снижение внутриглазного давления, повышают тонус гладкой и скелетной мускулатуры. Используются они в глазной практике при глаукоме, при миастении, атонии гладкомышечных орга-нов.

Н-холиномиметики

Классическим представителем этой группы является никотин. И хотя этот алкалоид не имеет самостоятельного клинического значения, большая распро-страненность курения делает необходимым остановиться на нем поподробнее.

Курение было завезено в Европу из Северной Америки, и до конца 19 века курили в основном мужчины и преимущественно трубки. С конца 19 века стало бурно развиваться производство сигарет, стали курить и женщины, и в настоящее время процент курящих в общей популяции мужчин и женщин в развитых странах колеблется в районе 35%. Интересно, что, хотя процент курящих не увеличивается в течение последних 10-15 лет, количество потребляемых сигарет курящими увеличивается с каждым годом. В среднем одна сигарета содержит 15-20 мг никотина, из которых примерно 10% (1-2 мг) усваивается курильщиком. Никотин из табачного дыма легко абсорбируется легкими, при этом концентрация его в плазме крови в течение 10 минут достигает пика, а затем медленно спадает. Именно появление никотина в крови преимущественно и определяет зависимость человека к курению, но не только это. В экспериментах с хроническими курильщиками введение в вену соответствующей дозы никотина не снижало тягу к курению, хотя снижало количество выкуриваемых сигарет. Такой же эффект имеют и жевательные резинки с никотином.

Что же плохого в курении? По данным британских исследователей, среди курильщиков риск смерти в возрасте 35-65 лет составляет 40%, а среди некуря-щих лишь 15%. Рак легких в 90% случаях обусловлен курением, кроме того, процент злокачественных опухолей ротоносоглотки у курильщиков в несколько раз больше, чем у некурящих людей. Хронический бронхит и другие хронические заболевания легких встречаются во много раз чаще у курильщиков, чем у некурящих людей. Ишемическая болезнь сердца и другие заболевания периферических сосудов обеспечивают смертность мужчин-курильщиков в возрасте 55-65 лет на 60% больше, чем у некурильщиков. Курение во время беременности приводит к снижению массы тела плода в среднем на 10%, повышению риска внутриутробной гибели - на 28%, риска выкидыша - на 30-70%, преждевременных родов - на 40% отслойки плаценты - на 50%. Никотин прекрасно проникает с молоком матери ребенку и вызывает тахикардию у него. Дети, рожденные от курящих матерей, отстают в своем развитии (умственном и физическом) от своих сверстников.

В заключение следует сказать, что, кроме того, что курильщики разрушают свой организм, они заставляют делать это и окружающих их людей, так назы-ваемых пассивных курильщиков. Поэтому во многих странах, в том числе и в РФ, приняты законы о запрете курения в общественных местах и в закрытых помещениях. Как медицинские работники вы должны показывать пример здоро-вого образа жизни и пропагандировать отказ от табакокурения. Кроме того, помните, что при найме на работу многие прогрессивные компании предпочтение отдают некурящим.

Другими Н-холиномиметиками, применяемыми в клинической практике, являются лобелии и цититон. При внутривенном введении эти препараты оказы-вают активирующее влияние на Н-холинорецепторы специфических рецептор-ных образований, называемых "каротидные клубочки", находящиеся в дуге аор-ты. От этих рецепторов идет рефлекторная дуга в дыхательный центр, поэтому при возбуждении их цититоном или лобелином происходит стимулирование ды-хательного центра. Этот эффект иногда используют при рефлекторной остановке дыхания, асфиксии новорожденных.

Холинергические синапсы локализованы во внутренних органах, получающих постганглионарные парасимпатические волокна, в вегетативных ганглиях, моз­говом слое надпочечников, каротидных клубочках, скелетных мышцах. Передача возбуждения в холинергических синапсах происходит с помощью ацетилхолина.

Ацетилхолин синтезируется в цитоплазме окончаний холинергических нервов из ацетил- Ко А и холина при участии фермента холинацетилтрансферазы (холи-нацетилазы) и депонируется в синаптических пузырьках (везикулах). Под влия­нием нервных импульсов ацетилхолин высвобождается из везикул в синаптичес­кую щель. Происходит это следующим образом. Импульс, достигший пресинаптической мембраны, вызывает ее деполяризацию, в результате чего от­крываются потенциалозависимые кальциевые каналы, через которые ионы каль­ция проникают в нервное окончание. Концентрация Са 2+ в цитоплазме нервного окончания повышается, что способствует слиянию мембраны везикул с преси­наптической мембраной и экзоцитозу везикул (рис. 8.1). Процесс слияния везикулярной и пресинаптической мембран, а, следовательно, экзоцитоз ве­зикул и выделение ацетилхолина блокируется ботулиновым токсином. Вы­свобождение ацетилхолина блокируют также вещества, которые снижают по­ступление Са 2+ в цитоплазму нервных окончаний, например, аминогликозидные антибиотики.

После высвобождения в синаптическую щель ацетилхолин стимулирует холи-норецепторы, локализованные как на постсинаптической, так и на пресинапти­ческой мембране холинергических синапсов.


В синаптической щели ацетилхолин очень быстро гидролизуется ферментом ацетилхолинэстеразой с образованием холина и уксусной кислоты. Холин захва­тывается нервными окончаниями (подвергается обратному нейрональному зах­вату) и вновь включается в синтез ацетилхолина. В плазме крови, печени и дру­гих органах присутствует фермент - бутирилхолинэстераза (псевдохолинэстераза, ложная холинэстераза), которая также может инактивировать ацетилхолин.



На передачу возбуждения в холинергических синапсах могут воздействовать вещества, которые оказывают влияние на следующие процессы: синтез ацетил­холина и его депонирование в везикулах; высвобождение ацетилхолина; взаимо­действие ацетилхолина с холинорецепторами; гидролиз ацетилхолина в синап­тической щели; обратный нейрональный захват холина пресинаптическими окончаниями. Депонирование ацетилхолина в везикулах уменьшает везамикол, который блокирует транспорт ацетилхолина из цитоплазмы в везикулы. Высво­бождение ацетилхолина в синаптическую щель стимулирует 4-аминопиридин (пимадин). Блокирует высвобождение ацетилхолина ботулиновый токсин (ботокс). Обратный нейрональный захват холина ингибирует гемихолиний, который при­меняют в экспериментальных исследованиях.

В медицинской практике в основном используют вещества, которые непос­редственно взаимодействуют с холинорецепторами: холиномиметики (ве­щества, стимулирующие холинорецепторы), или холиноблокаторы (веще­ства, которые блокируют холинорецепторы и таким образом препятствуют действию на них ацетилхолина). Применяют вещества, которые ингибируют гид­ролиз ацетилхолина, - ингибиторы ацетилхолинэстеразы (антихолинэсте-разные средства).


СРЕДСТВА, СТИМУЛИРУЮЩИЕ ХОЛИНЕРГИЧЕСКИЕ СИНАПСЫ

В этой группе выделяют холиномиметики - вещества, которые подобно ацетилхолину непосредственно стимулируют холинорецепторы, и антихо-линэстеразные средства, которые, ингибируя ацетилхолинэстеразу, по­вышают концентрацию ацетилхолина в синаптической щели и таким образом уси­ливают и пролонгируют действие ацетилхолина.

Холиномиметики

Холинорецепторы разных холинергических синапсов обладают неодинаковой чувствительностью к одним и тем же веществам. Холинорецепторы, локализо­ванные в постсинаптической мембране клеток эффекторных органов у оконча­ний постганглионарных парасимпатических волокон, проявляют повышенную чувствительность к мускарину (алкалоиду, выделенному из некоторых видов му­хоморов). Такие рецепторы называют мускариночувствительными, или М-холи-норецепторами.

Холинорецепторы, расположенные в постсинаптической мембране нейронов симпатических и парасимпатических ганглиев, хромаффинных клеток мозгового вещества надпочечников, в каротидных клубочках (которые находятся в месте деления общих сонных артерий) и на концевой пластинке скелетных мышц, наи­более чувствительны к никотину и поэтому называются никотиночувствитель-ными рецепторами или Н-холинорецепторами. Эти рецепторы подразделяются на Н-холинорецепторы нейронального типа (Н н) и Н-холинорецепторы мышеч­ного типа (Н м), различающиеся по локализации (см. табл. 8.1) и по чувствитель­ности к фармакологическим веществам.

Вещества, которые избирательно блокируют Н н -холинорецепторы ганглиев, мозгового вещества надпочечников и каротидных клубочков, называются ганг-лиоблокаторами, а вещества, преимущественно блокирующие Н-холинорецеп­торы скелетных мышц - курареподобными средствами.

Среди холиномиметиков выделяют вещества, которые преимущественно стимулируют М-холинорецепторы (М-холиномиметики), Н-холинорецепторы (Н-холиномиметики) или оба подтипа холинорецепторов одновременно (М-, Н-холиномиметики).

Классификация холиномиметиков

М-холиномиметики: мускарин, пилокарпин, ацеклидин.

Н-холиномиметики: никотин, цититон, лобелии.

М,Н-холиномиметики: ацетилхолин, карбахолин.

М-холиномиметики

М-холиномиметики стимулируют М-холинорецепторы, расположенные в мем­бране клеток эффекторных органов и тканей, получающих парасимпатическую иннервацию. М-холинорецепторы подразделяются на несколько подтипов, ко­торые проявляют неодинаковую чувствительность к разным фармакологическим веществам. Обнаружено 5 подтипов М-холинорецепторов (М,-, М 2 -, М 3 -, М 4 -, М 5 -). Наиболее хорошо изучены М,-, М 2 - и М 3 -холинорецепторы (см. табл. 8.1). Все М-холинорецепторы относятся к мембранным рецепторам, взаимодейству­ющим с G-белками, а через них с определенными ферментами или ионными ка­налами (см. гл. «Фармакодинамика»). Так, М 2 -холинорецепторы мембран кардио-


Таблица 8.1. Подтипы холинорецепторов и эффекты, вызываемые их стимуляцией

М-холинорецепторы

м, ЦНС Энтерохромаффиноподобные клетки желудка Выделение гистамина, который стимулирует секрецию хлористоводородной кислоты пари­етальными клетками желудка
м 2 Сердце Пресинаптическая мембрана окончаний постганглионарных парасимпатических волокон Уменьшение частоты сердечных сокращений. Угнетение атриовентрикулярной проводимости. Снижение сократительной активности пред­сердий Снижение высвобождения ацетилхолина
м 3 (иннер- вируе- мые) Круговая мышца радужной оболочки Цилиарная (ресничная) мышца глаза Гладкие мышцы бронхов, желуд­ка, кишечника, желчного пу­зыря и желчных протоков, мочевого пузыря, матки Экзокринные железы (брон­хиальные железы, железы же­лудка, кишечника, слюнные, слезные, носоглоточные и по­товые железы) Сокращение, сужение зрачков Сокращение, спазм аккомодации (глаз устанав­ливается на ближнюю точку видения) Повышение тонуса (за исключением сфинкте­ров) и усиление моторики желудка, кишечника и мочевого пузыря Повышение секреции
м 3 (неин- нервиру- емые) Эндотелиальные клетки крове­носных сосудов Выделение эндотелиального релаксирующего фактора (N0), который вызывает расслабле­ние гладких мышц сосудов

Н-холинорецепторы

миоцитов взаимодействуют с Gj-белками, угнетающими аденилатциклазу. При их стимуляции в клетках снижается синтез цАМФ и, как следствие, активность цАМФ-зависимой протеинкиназы, фосфорилирующей белки. В кардиомиоци-тах нарушается фосфорилирование кальциевых каналов - в результате мень­ше Са 2+ поступает в клетки синоатриального узла в фазу 4 потенциала действия. Это приводит к снижению автоматизма синоатриального узла и, следовательно,


к уменьшению частоты сердечных сокращений. Уменьшаются также и другие показатели работы сердца (см. табл. 8.1).

М 3 -холинорецепторы гладкомышечных клеток и клеток экзокринных же­лез взаимодействуют с Gq-белками, которые активируют фосфолипазу С. При участии этого фермента из фосфолипидов клеточных мембран образуется ино-зитол-1,4,5-трифосфат (1Р 3), который способствует высвобождению Са 2+ из сар-коплазматического ретикулума (внутриклеточного депо кальция). В резуль­тате при стимуляции М 3 -холинорецепторов концентрация Са 2+ в цитоплазме клеток увеличивается, что вызывает повышение тонуса гладких мышц внут­ренних органов и увеличение секреции экзокринных желез. Кроме того, в мемб­ране эндотелиальных клеток сосудов располагаются неиннервируемые (внеси-наптические) М 3 -холинорецепторы. При их стимуляции увеличивается высвобож­дение из эндотелиальных клеток эндотелиального релаксирующего фактора (N0), который вызывает расслабление гладкомышечных клеток сосудов. Это приводит к снижению тонуса сосудов и уменьшению артериального давления.

М,-холинорецепторы сопряжены с Gq-белками. Стимуляция М,-холино-рецепторов энтерохромаффиноподобных клеток желудка приводит к повы­шению концентрации цитоплазматического Са 2+ и увеличению секреции эти­ми клетками гистамина. Гистамин, в свою очередь, действуя на париетальные клетки желудка, стимулирует секрецию хлористоводородной кислоты. Подти­пы М-холинорецепторов и эффекты, вызываемые их стимуляцией, представле­ны в табл. 8.1.

Прототипом М-холиномиметиков является алкалоид мускарин, содержа­щийся в грибах мухоморах. Мускарин вызывает эффекты, связанные со стиму­ляцией всех подтипов М-холинорецепторов, приведенных в табл. 8.1. Через ге-матоэнцефалический барьер мускарин не проникает и поэтому не оказывает существенного влияния на ЦНС. Мускарин не используется в качестве лекар­ственного средства. При отравлении мухоморами, содержащими мускарин, про­является его токсическое действие, связанное с возбуждением М-холинорецеп­торов. При этом отмечаются сужение зрачков, спазм аккомодации, обильное слюнотечение и потоотделение, повышение тонуса бронхов и секреции бронхи­альных желез (что проявляется ощущением удушья), брадикардия и снижение артериального давления, спастические боли в животе, диарея, тошнота и рвота. При отравлении мухоморами проводят промывание желудка и дают солевые сла­бительные. Для устранения действия мускарина применяют М-холиноблокатор атропин.


Пилокарпин является алкалоидом листьев кустарника Pilocarpus pinna-tifolius Jaborandi, произрастающего в Южной Америке. Пилокарпин, применяе­мый в медицинской практике, получают синтетическим путем. Пилокарпин ока­зывает прямое стимулирующее действие на М-холинорецепторы и вызывает все эффекты, характерные для препаратов этой группы (см. табл. 8.1). Особенно силь­но пилокарпин повышает секрецию желез, поэтому его иногда назначают внутрь при ксеростомии (сухость слизистой оболочки полости рта). Но поскольку пи­локарпин обладает довольно высокой токсичностью, его в основном приме­няют местно в виде глазных лекарственных форм для снижения внутриглазно­го давления.

Величина внутриглазного давления в основном зависит от двух процессов: образования и оттока внутриглазной жидкости (водянистой влаги глаза), кото­рая продуцируется ресничным телом, а оттекает главным образом через дренаж­ную систему угла передней камеры глаза (между радужкой и роговицей). Эта дре­нажная система включает трабекулярную сеть (гребенчатую связку) и венозный синус склеры (шлеммов канал). Через щелевидные пространства между трабеку-лами (фонтановы пространства) трабекулярной сети жидкость фильтруется в шлеммов канал, а оттуда по коллекторным сосудам оттекает в поверхностные вены склеры (рис. 8.2).


Снизить внутриглазное давление можно, уменьшив продукцию внутриглазной жидкости и/или увеличив ее отток. Отток внутриглазной жидкости во многом зависит от размера зрачка, который регулируется двумя мышцами радужной обо­лочки: круговой мышцей (m. sphincter pupillae) и радиальной мышцей (т. dilatator pupillae). Круговая мышца зрачка иннервируется парасимпатическими волокна­ми (п. oculomotorius), а радиальная - симпатическими (п. sympaticus). При со­кращении круговой мышцы зрачок суживается, а при сокращении радиальной мышцы - расширяется.

Пилокарпин, как все М-холиномиметики, вызывает сокращение круговой мышцы радужной оболочки и сужение зрачков (миоз). При этом радужная обо­лочка становится тоньше, что способствует раскрытию угла передней камеры глаза и оттоку внутриглазной жидкости через фонтановы пространства в шлеммов ка­нал. Это приводит к снижению внутриглазного давления.

Способность пилокарпина снижать внутриглазное давление используется при лечении глаукомы - заболевания, которое характеризуется постоянным или пе­риодическим повышением внутриглазного давления, что может привести к атро­фии зрительного нерва и потере зрения. Глаукома бывает открытоугольной и зак-рытоугольной. Открытоугольная форма глаукомы связана с нарушением дренажной системы угла передней камеры глаза, через которую осуществляется отток внутриглазной жидкости; сам угол при этом открыт. Закрытоугольная фор­ма развивается при нарушении доступа к углу передней камеры глаза чаще всего при его частичном или полном закрытии корнем радужки. Внутриглазное давле­ние при этом может повыситься до 60-80 мм рт.ст. (в норме внутриглазное давле­ние составляет от 16 до 26 мм рт.ст.).

В связи со способностью суживать зрачки (миотическое действие) пилокар­пин обладает высокой эффективностью при лечении закрытоугольной глаукомы ив этом случае используется в первую очередь (является препаратом выбора). Назначают пилокарпин и при открытоугольной глаукоме. Пилокарпин приме­няют в виде 1-2% водных растворов (продолжительность действия - 4-8 ч), растворов с добавлением полимерных соединений, оказывающих пролонгиро­ванное действие (8-12 ч), мазей и специальных глазных пленок из полимерно­го материала (глазные пленки с пилокарпином закладывают за нижнее веко 1-2 раза в сутки).

Пилокарпин вызывает сокращение ресничной мышцы, что приводит к рас­слаблению цинновой связки, расстягивающей хрусталик. Кривизна хрусталика увеличивается, он приобретает более выпуклую форму. При увеличении кривиз­ны хрусталика повышается его преломляющая способность - глаз устанавлива­ется на ближнюю точку видения (лучше видны предметы, находящиеся вблизи). Это явление, которое называется спазмом аккомодации, является побочным эф­фектом пилокарпина. При закапывании в конъюнктивальный мешок пилокар­пин практически не всасывается в кровь и не оказывает заметного резорбтивного действия.

Ацеклидин является синтетическим соединением с прямым стимулирую­щим действием на М-холинорецепторы и вызывает все эффекты, связанные с воз­буждением этих рецепторов (см. табл. 8.1).

Ацеклидин можно применять местно (инсталлировать в конъюнктивальный мешок) для понижения внутриглазного давления при глаукоме. После однократ­ной инсталляции снижение внутриглазного давления продолжается до 6 ч. Од­нако растворы ацеклидина обладают местнораздражающим действием и могут вызвать раздражение конъюнктивы.


В связи с меньшей по сравнению с пилокарпином токсичностью ацеклидин применяется для резорбтивного действия при атонии кишечника и мочевого пу­зыря. Побочные эффекты: слюнотечение, диарея, спазмы гладкомышечных ор­ганов. Вследствие того, что ацеклидин повышает тонус гладких мышц бронхов, он противопоказан при бронхиальной астме.

При передозировке М-холиномиметиков используют их антагонисты - М-хо-линоблокаторы (атропин и атропиноподобные средства).

Н-холиномиметики

К этой группе относятся алкалоиды никотин, лобелии, цитизин, которые дей­ствуют преимущественно на Н-холинорецепторы нейронального типа, локали­зованные на нейронах симпатических и парасимпатических ганглиев, хромаф-финных клетках мозгового вещества надпочечников, в каротидных клубочках и в ЦНС. На Н-холинорецепторы скелетных мышц эти вещества действуют в значи­тельно больших дозах.

Н-холинорецепторы относятся к мембранным рецепторам, непосредственно связанным с ионными каналами. По структуре они являются гликопротеинами и состоят из нескольких субъединиц. Так Н-холинорецептор нервно-мышечных синапсов включает 5 белковых субъединиц (а, а, (3, у, 6), которые окружают ион­ный (натриевый) канал. При связывании двух молекул ацетилхолина с α-субъе-диницами происходит открытие Na + -канала. Ионы Na + входят в клетку, что при­водит к деполяризации постсинаптической мембраны концевой пластинки скелетных мышц и мышечному сокращению.

Никотин - алкалоид, который содержится в листьях табака (Nicotiana tabacum, Nicotiana rustica). В основном никотин попадает в организм человека во время курения табака, примерно 3 мг - за время курения одной сигареты (смер­тельная доза никотина - 60 мг). Он быстро всасывается со слизистых оболочек дыхательных путей (также хорошо проникает через неповрежденную кожу).

Никотин.стимулирует Н-холинорецепторы симпатических и парасимпатичес­ких ганглиев, хромаффинных клеток мозгового вещества надпочечников (повы­шает выделение адреналина и норадреналина) и каротидных клубочков (стиму­лирует дыхательный и сосудодвигательный центры). Стимуляция симпатических ганглиев, мозгового вещества надпочечников и каротидных клубочков приводит к наиболее характерным для никотина эффектам со стороны сердечно-сосудистой системы: увеличению частоты сердечных сокращений, сужению сосудов и повы­шению артериального давления. Стимуляция парасимпатических ганглиев вызы­вает повышение тонуса и моторики кишечника и повышение секреции экзокрин-ныхжелез (большие дозы никотина оказывают на эти процессы угнетающее влияние). Стимуляция Н-холинорецепторов парасимпатических ганглиев является также причиной брадикардии, которая может наблюдаться в начале действия никотина.

Так как никотин обладает высокой липофильностью (является третичным ами­ном), он быстро проникает через гематоэнцефалический барьер в ткани мозга. В ЦНС никотин вызывает высвобождение дофамина, некоторых других биоген-


ных аминов и возбуждающих аминокислот, с чем связывают субъективные при­ятные ощущения, возникающие у курильщиков. В небольших дозах никотин сти­мулирует дыхательный центр, а в больших дозах вызывает его угнетение вплоть до остановки дыхания (паралич дыхательного центра). В больших дозах никотин вызывает тремор и судороги. Действуя на триггерную зону рвотного центра, ни­котин может вызвать тошноту и рвоту.

Никотин в основном метаболизируется в печени и выводится почками в неиз­мененном виде и в виде метаболитов. Таким образом он быстро элиминируется из организма (t ]/2 - 1,5-2 ч). К действию никотина быстро развивается толерант­ность (привыкание).

Острое отравление никотином может произойти при попадании растворов никотина на кожу или слизистые оболочки. При этом отмечаются гиперсалива­ция, тошнота, рвота, диарея, брадикардия, а затем тахикардия, повышение арте­риального давления, сначала одышка, а затем угнетение дыхания, возможны су­дороги. Смерть наступает от паралича дыхательного центра. Основной мерой помощи является искусственное дыхание.

При курении табака возможно хроническое отравление никотином, а также другими токсичными веществами, которые содержатся в табачном дыме и могут оказывать раздражающее и канцерогенное действие. Для большинства куриль­щиков типичны воспалительные заболевания дыхательных путей, например, хро­нический бронхит; чаще отмечается рак легких. Повышается риск сердечно-со­судистых заболеваний.

К никотину развивается психическая зависимость, поэтому при прекращении курения у курильщиков возникает синдром отмены, который связан с возникно­вением тягостных ощущений, снижением работоспособности. Для уменьшения синдрома отмены рекомендуют в период отвыкания от курения использовать же­вательную резинку, содержащую никотин (2 или 4 мг), или трансдермальную те­рапевтическую систему (специальный накожный пластырь, который в течение 24 ч равномерно выделяет небольшие количества никотина).

В медицинской практике иногда используют Н-холиномиметики лобелии и цитизин.

Лобелии - алкалоид растения Lobelia inflata является третичным амином. Стимулируя Н-холинорецепторы каротидных клубочков, лобелии рефлекторно возбуждает дыхательный и сосудодвигательный центры.

Цитизин - алкалоид, который содержится в растениях ракитник (Cytisus laburnum) и термопсис (Thermopsis lanceolata), по структуре является вторичным амином. По действию сходен с лобелином, но несколько сильнее возбуждает ды­хательный центр.

Цитизин и лобелии входят в состав таблеток «Табекс» и «Лобесил», которые применяют для облегчения отвыкания от курения. Препарат цититон (0,15% ра­створ цитизина) и раствор лобелина иногда вводят внутривенно для рефлектор­ной стимуляции дыхания. Однако эти препараты эффективны только при сохра­нении рефлекторной возбудимости дыхательного центра. Поэтому их не применяют при отравлении веществами, которые снижают возбудимость дыха­тельного центра (снотворные средства, наркотические анальгетики).

М, Н-холиномиметики

Ацетилхолин является медиатором во всех холинергических синапсах и стимулирует как М-, так и Н-холинорецепторы. Ацетилхолин выпускают в виде лиофилизированного препарата ацетилхолин-хлорида. При введении ацетилхо-


лина в организм преобладают его эффекты, связанные со стимуляцией М-холи­норецепторов: брадикардия, расширение сосудов и понижение артериального дав­ления, повышение тонуса и усиление перистальтики ЖКТ, повышение тонуса глад­ких мышц бронхов, желчного и мочевого пузыря, матки, усиление секреции бронхиальных и пищеварительных желез. Стимулирующее влияние ацетилхолина на периферические Н-холинорецепторы (никотиноподобное действие) про­является при блокаде М-холинорецепторов (например, атропином). В результате на фоне атропина ацетилхолин вызывает тахикардию, сужение сосудов и, как след­ствие, повышение артериального давления. Происходит это вследствие возбуж­дения симпатических ганглиев, повышения выделения адреналина хромаффинными клетками мозгового вещества надпочечников и стимуляции каротидных клубочков.

В очень больших дозах ацетилхолин может вызвать стойкую деполяризацию постсинаптической мембраны и блокаду передачи возбуждения в холинергических синапсах.

По химической структуре ацетилхолин является четвертичным аммониевым соединением и поэтому плохо проникает через гематоэнцефалический барьер и не оказывает существенного влияния на ЦНС.

В организме ацетилхолин быстро разрушается ацетилхолинэстеразой и поэто­му оказывает кратковременное действие (несколько минут). По этой причине ацетилхолин почти не используют в качестве лекарственного средства. В основ­ном ацетилхолин применяют при проведении экспериментов.

Карбахол (карбахолин) является аналогом ацетилхолина, но в отличие от
него практически не разрушается ацетилхолинэстеразой и поэтому действует бо­
лее продолжительно (в течение 1-1,5 ч). Вызывает такие же фармакологичес­
кие эффекты. Раствор карбахола в виде глазных капель изредка используют при
глаукоме.

Холинергические синапсы представлены более широко.

Работа холинергического синапса.

Медиатор – ацетилхолин. Ацетилхолин синтезируется во всех нервных окончаниях(холинергических) из аминоспирта холина и предварительно активированного ацетата – ацилКоА под действием фермента – ацетилхолинэстеразы. Ацетилхолин синтезируется в везикулах нервных окончаний. Эти везикулы увеличиваются в размерах, подходя к пресинаптической мембране. Большие содержат готовый ацетилхолин.

Ацетилхолин, выделившийся в синаптическую щель, взаимодействует с холинорецепторами на постсинаптической мембране.

Рецепторы делятся на:

1.м – холинорецепторы(возбуждаются алкалоидом из мухомора – мускарином и блокируется алкалоидом атропином)

2.н – холинорецепторы(возбуждаются малыми дозами никотина и блокируются большими дозами никотина).

Н – холинорецепторы – на скелетной мускулатуре(Н м - холинорецепторы), в ганглиях(Н н - холинорецепторы). На исполнительных органах парасимпатики – М – холинорецепторы.

М – холинорецепторы делятся на 3 подтипа: М 1 , М 2 , М 3 .

М 1 – локализованы в ЦНС и их возбуждение – кратковременная память. В вегетативных ганглиях(модулирующая роль) париетальных клеток желудка.

М 2 – их возбуждение связано с торможением функции любого органа, на котором они расположены(в основном сердце).

М 3 – расположены в гладких мышцах и железах. Все эффекты, связанные с их возбуждением – связаны с усилением функции органов(но сфинктеры расслабляются). Железы усиливают секрецию.

Механизм функционирования М – рецепторов.

М 1 и М 3 – рецепторы через G q – белок связаны с фосфолипазой С, то есть при их возбуждении идет наработка инозитолтрифосфата и диацилглицерина, следовательно идет повышение концентрации свободного кальция, то есть повышается тонус мышц.

М 2 – связаны через G i – белок с аденилатциклазой или ионными каналами. Их возбуждение приведет к уменьшению активности аденилатциклазы, повышению проводимости, что приводит к выходу калия из клетки, то есть возникает гиперполяризация, и как следствие снижение функции.

Н – холинорецепторы не разделены на подтипы, а по локализации делятся на:

1.никотиновые мышечного типа(Н м). Находятся на скелетных мышцах

2.нейронального типа(Н н). Локализация: в ганглиях(как симпатики, так и парасимпатики) – эффект возбуждения – усиление проводимости; в мозговом слое надпочечников – эффект – усиление выделения адреналина; каротидный клубочек – возбуждение приводит к рефлекторной активации дыхания в ЦНС.

Механизм действия.

Н – рецепторы представляют собой натриевый ионный канал(5 субъединиц - 2α, β, γ, δ). Вещество, взаимодействующее с этим рецептором, взаимодействует с α – субъединицей, которые формируют натриевый канал. При его возбуждении входящий ток натрия, то есть идет деполяризация, следствием становится сокращение мышцы.


Второй этап работы синапса: после того как ацетилхолин провзаимодействовал с рецепторами, он подвергается действию фермента – ацетилхолинэстеразы(разрушается). Реакция очень быстрая.

Аминоспирт холин, который образовался в результате разрушения ацетилхолина в синаптической щели, подвергается обратному захвату в нервное окончание(около 50%) и вновь идет на синтез ацетилхолина.

Классификация лекарств.

1.вещества, усиливающие работу холинергического синапса

· прямого типа действия(М –Н – холиномиметики – ацетилхолин, карбохолин; М – миметики – мускарин, пилокарпин; Н – миметики – никотин, цититон, лобелин)

· непрямого типа действия:

ü антихолинэстеразные(блокируют ацетилхолинэстеразу). Делятся на вещества обратимого действия – прозерин, физостигмин, галантамин и необратимого действия – армин.

ü Вещества, усиливающие выделение ацетилхолина из нервных окончаний – аминопиридин, цисаприд(усиливает выделение ацетилхолина в кишечнике)

2.вещества, ослабляющие проведение возбуждения в холинергическом синапсе.

М – Н – холиномиметики.

Как лекарственные вещества почти не применяются, так как эффект очень краток.

Карбохолин.

Эфир карбаминовой кислоты. Действует более продолжительно(не разрушается ацетилхолинэстеразой). Используется при послеоперационной атонии гладкомышечных органов и редко в глаз для лечения глаукомы.

Рассмотрим две группы одновременно М – Н – холиномиметиков и М – холиномиметиков, так как их эффекты одинаковы(никотиновые эффекты затушевываются более сильным возбуждением мускариновых рецепторов). Выявить у лекарственного средства наличие никотинового препарата можно только, если предварительно заблокировать атропином мускариновые рецепторы.

Глава 3.

Вещества, действующие на холинергические синапсы (фармакология)

На рисунке 10 показана схема синапса, в котором возбуждение передается с помощью ацетилхолина. Ацетилхолин синтезируется в цитоплазме холинергических нервных окончаний из ацетилкоэн-зима А и холина; путем активного транспорта проникает в везикулы и депонируется в везикулах.

При поступлении нервных импульсов происходит деполяризация мембраны нервного окончания, открываются потенциал-зависимые кальциевые каналы, ионы Са 2+ поступают в цитоплазму нервного окончания и способствуют взаимодействию белков мембраны везикул с белками пресинаптической мембраны. В результате везикулы встраиваются в пресинаптическую мембрану, открываются в сторону синаптической щели и высвобождают ацетилхолин.

Рис. 10. Холинергический синапс.

ХАТ - холинацетилтрансфераза; АцКоА - ацетилкоэнзим А; Ацх - ацетилхолин;

АХЭ - ацетилхолинэстераза.

Ацетилхолин возбуждает рецепторы постсинаптической мембраны (холинорецепторы) и расщепляется ферментом ацетилхолин-эстеразой на холин и уксусную кислоту. Холин подвергается обратному захвату нервными окончаниями (обратный нейрональный захват) и вновь участвует в синтезе ацетилхолина.

Известны вещества, действующие на разные этапы холинергической передачи.

Везамикол блокирует вход ацетилхолина в везикулы.

Ионы Mg 2+ и аминогликозиды препятствуют входу Са 2+ в нервное окончание через потенциал-зависимые кальциевые каналы (аминогликозиды могут нарушать нервно-мышечную передачу).

Ботулиновый токсин вызывает протеолиз синаптобревина (белок мембраны везикул, который взаимодействует с белками пресинаптической мембраны) и поэтому препятствует встраиванию везикул в пресинаптическую мембрану. Таким образом уменьшается выделение ацетилхолина из холинергического окончания. При ботулизме нарушается нервно-мышечная передача; в тяжелых случаях возможен паралич дыхательных мышц.

4-Аминопиридин блокирует К + -каналы пресинаптической мембраны. Это способствует деполяризации мембраны и высвобождению ацетилхолина. 4-Аминопиридин облегчает нервно-мышечную передачу.

Антихолинэстеразные вещества ингибируют ацетилхолинэстеразу и таким образом препятствуют расщеплению ацетилхолина; холинергическая передача активируется.

Вещества, стимулирующие холинорецепторы, называют холиномиметиками (от греч. mimesis - подражание; эти вещества в своем действии «подражают» ацетилхолину).

Вещества, которые блокируют холинорецепторы, называют холиноблокаторами.

Гемихолиний препятствует обратному нейрональному захвату ацетилхолина.

А. Средства, стимулирующие холинергические синапсы

Из средств, стимулирующих холинергические синапсы, в медицинской практике применяют вещества, которые стимулируют холинорецепторы - холиномиметики, а также антихолинэстеразные средства (блокируют ацетилхолинэстеразу).

3.1. Холиномиметики (фармакология)

Холинорецепторы разных синапсов проявляют неодинаковую чувствительность к фармакологическим веществам. Холинорецепторы клеток органов и тканей в области окончаний парасимпатических нервных волокон проявляют повышенную чувствительность к возбуждающему действию мускарина (алкалоид грибов мухоморов). Эти холинорецепторы обозначают какМ-холинорецепторы (мускариночувствительные холинорецепторы).

Остальные холинорецепторы эфферентной иннервации проявляют высокую чувствительность к стимулирующему действию никотина ( Nicotine ; алкалоид табака), поэтому их называют N -холинорецепторами (никотиночувствительные холинорецепторы). Различают 2 типа N -холинорецепторов: N N -холинорецепторы и N м -холинорецепторы (рис. 11).


Рис. 11. Локализация хопинорецепторов.

Адр- адреналин; НА- норадреналин; М- М-холинорецепторы; N N - N -холинорецепторы нейронального типа; N M - N

К N N -холинорецепторам относят ганглионарные N -холинорецеп-торы ( N -холинорецепторы нейронов симпатических и парасимпатических ганглиев), а также N-холинорецепторы хромаффинных клеток мозгового вещества надпочечников, которые выделяют адреналин и норадреналин. Такие же рецепторы находятся в каротидных клубочках (расположены в местах деления общих сонных артерий); при их стимуляции рефлекторно возбуждаются дыхательный и сосудодвигательный центры продолговатого мозга.

К N M -холинорецепторам относят N -холинорецепторы скелетных мышц.

Как М-холинорецепторы, так и N -холинорецепторы имеются также в ЦНС.

В соответствии с делением холинорецепторов на М- и N -холинорецепторы холиномиметики делят на М-холиномиметики, N -холиномиметики и М, N -холиномиметики (стимулируют и М-, и N -холинорецепторы).

3.1.1. М-холиномиметики (фармакология)

Различают подтипы М-холинорецепторов - М 1 -, М 2 - и М 3 -холинорецепторы.

В ЦНС, в энтерохромаффиноподобных клетках желудка локализованы M 1 -холинорецепторы; в сердце - М 2 -холинорецепторы, в гладких мышцах внутренних органов, железах и в эндотелии сосудов - М 3 -холинорецепторы (табл. 1).

При возбуждении М,-холинорецепторов и М 3 -холинорецепто-ров через G -белки активируется фосфолипаза С; образуется ино-зитол-1,4,5-трифосфат, который способствует высвобождению Са 2+

Таблица 1. Локализация подтипов М-холинорецепторов

М 1 ,

M 2

М 3

цнс

Кардиомиоциты

Эндотелий кровеносных сосудов 1

Гладкие мышцы бронхов, ЖКТ

Слюнные, бронхиальные, потовые железы

Энтерохромаффиноподобные клетки желудка

1 При стимуляции М 3 -холинорецепторов эндотелия кровеносных сосудов высвобождается эндотелиальный релаксирующий фактор - N0, который расширяет кровеносные сосуды из саркоплазматического (эндоплазматического) ретикулума. Повышается уровень внутриклеточного Са 2+ , развиваются возбудительные эффекты.

При стимуляции М 2 -холинорецепторов сердца через G .-белки угнетается аденилатциклаза, снижаются уровень цАМФ, активность протеинкиназы и уровень внутриклеточного Са 2+ . Кроме того, при возбуждении М 2 -холинорецепторов через G о -белки активируются К + -каналы, развивается гиперполяризация клеточной мембраны. Все это ведет к развитию тормозных эффектов.

М 2 -холинорецепторы имеются на окончаниях постганглионар-ных парасимпатических волокон (на пресинаптической мембране); при их возбуждении выделение ацетилхолина уменьшается.

Мускарин стимулирует все подтипы М-холинорецепторов.

Через гематоэнцефалический барьер мускарин не проникает и поэтому на ЦНС существенного влияния не оказывает.

В связи со стимуляцией М 1 -холинорецепторов энтерохромаффиноподобных клеток желудка мускарин увеличивает выделение гистамина, который стимулирует секрецию хлористоводородной кислоты париетальными клетками.

В связи со стимуляцией М 2 -холинорецепторов мускарин урежает сокращения сердца (вызывает брадикардию) и затрудняет атриовентрикулярную проводимость.

В связи со стимуляцией М 3 -холинорецепторов мускарин:

1) суживает зрачки (вызывает сокращение круговой мышцы радужки);

2) вызывает спазм аккомодации (сокращение ресничной мышцы ведет к расслаблению цинновой связки; хрусталик становится более выпуклым, глаз устанавливается на ближнюю точку видения);

3) повышает тонус гладких мышц внутренних органов (бронхи, желудочно-кишечный тракт и мочевой пузырь), за исключением сфинктеров;

4) увеличивает секрецию бронхиальных, пищеварительных и потовых желез;

5) снижает тонус кровеносных сосудов (большинство сосудов не получает парасимпатической иннервации, но содержит неиннер-вируемые М 3 -холинорецепторы; стимуляция М 3 -холинорецепторов эндотелия сосудов ведет к высвобождению NО, который расслабляет гладкие мышцы сосудов).

В медицинской практике мускарин не применяется. Фармакологическое действие мускарина может проявляться при отравлении мухоморами. Отмечаются сужение зрачков глаз, сильное слюнотечение и потоотделение, чувство удушья (усиленная секреция бронхиальных желез и повышение тонуса бронхов), брадикардия, снижение артериального давления, спастические боли в животе, рвота, диарея.

В связи с действием других алкалоидов мухоморов, обладающих М-холиноблокирующими свойствами, возможно возбуждение ЦНС: беспокойство, бред, галлюцинации, судороги.

При лечении отравлений мухоморами проводят промывание желудка, дают солевое слабительное. Для ослабления действия мускарина вводят М-холиноблокатор атропин. Если преобладают симптомы возбуждения ЦНС, атропин не используют. Для уменьшения возбуждения ЦНС применяют препараты бензодиазепинов (диазепам и др.).

Из М-холиномиметиков в практической медицине используют пилокарпин, ацеклидин и бетанехол.

Пилокарпин - алкалоид растения, произрастающего в Южной Америке. Препарат применяют в основном местно в глазной практике. Пилокарпин суживает зрачки и вызывает спазм аккомодации (увеличивает кривизну хрусталика).

Сужение зрачков (миоз) наступает в связи с тем, что пилокарпин вызывает сокращение круговой мышцы радужной оболочки (иннервируется парасимпатическими волокнами).

Пилокарпин увеличивает кривизну хрусталика. Это связано с тем, что пилокарпин вызывает сокращение ресничной мышцы, к которой прикрепляется циннова связка, растягивающая хрусталик. При сокращении ресничной мышцы циннова связка расслабляется и хрусталик принимает более выпуклую форму. В связи с увеличением кривизны хрусталика увеличивается его преломляющая способность, глаз устанавливается на ближнюю точку видения (человек хорошо видит близкие предметы и плохо - дальние). Такое явление называют спазмом аккомодации. При этом возникает мак-ропсия (видение предметов в увеличенном размере).

В офтальмологии пилокарпин в виде глазных капель, глазной мази, глазных пленок применяют при глаукоме - заболевании, которое проявляется повышением внутриглазного давления и может вести к нарушениям зрения.

Призакрытоуголъной форме глаукомы пилокарпин снижает внутриглазное давление за счет сужения зрачков и улучшения доступа внутриглазной жидкости в угол передней камеры глаза (между радужкой и роговицей), в котором расположена гребешковая связка (рис. 12). Через крипты между трабекулами гребешковой связки (фонтановы пространства) происходит отток внутриглазной жидкости, которая далее поступает в венозный синус склеры - шлеммов канал (трабекуло-каналикулярный отток); повышенное внутриглазное давление снижается. Миоз, вызываемый пилокарпином, сохраняется 4-8 ч. Пилокарпин в виде глазных капель применяют 1-3 раза в день.

Приоткрытоугольной форме глаукомы пилокарпин также может улучшать отток внутриглазной жидкости за счет того, что при сокращении цилиарной мышцы напряжение передается на трабекулы гребешковой связки; при этом происходит растяжение трабекулярной сети, фонтановы пространства увеличиваются и улучшается отток внутриглазной жидкости.

Иногда пилокарпин в малых дозах (5-10 мг) назначают внутрь для стимуляции секреции слюнных желез при ксеростомии (сухость рта), вызванной лучевой терапией опухолей головы или шеи.

Ацеклидин - синтетическое соединение, менее токсичное, чем пилокарпин. Ацеклидин вводят под кожу при послеоперационной атонии кишечника или мочевого пузыря.

Бетанехол - синтетический М-холиномиметик, который применяют при послеоперационной атонии кишечника или мочевого пузыря.

Рис. 12. Строение глаза.

3.1.2. N -холиномиметики (фармакология)

N -холиномиметиками называют вещества, возбуждающие N - xo -линорецепторы (никотиночувствительные рецепторы).

N -холинорецепторы непосредственно связаны с N а + -каналами клеточной мембраны. При возбуждении N -холинорецепторов Na + -каналы открываются, вход Na + ведет к деполяризации клеточной мембраны и возбудительным эффектам.

N N -холинорецепторы находятся в нейронах симпатических и парасимпатических ганглиев, в хромаффинных клетках мозгового вещества надпочечников, в каротидных клубочках. Кроме того, N N -холинорецепторы обнаружены в ЦНС, в частности, в клетках Реншоу, которые оказывают тормозное влияние на мотонейроны спинного мозга.

N м -холинорецепторы локализованы в нервно-мышечных синапсах (в концевых пластинках скелетных мышц); при их стимуляции происходит сокращение скелетных мышц.

Никотин - алкалоид из листьев табака. Бесцветная жидкость, которая на воздухе приобретает коричневый цвет. Хорошо всасывается через слизистую оболочку полости рта, дыхательных путей, через кожу. Легко проникает через гематоэнцефалический барьер. Большая часть никотина (80-90%) метаболизируется в печени. Никотин и его метаболиты выводятся в основном почками. Период полуэли­минации ( t l /2 ) 1-1,5ч. Никотин выделяется молочными железами.

Никотин стимулирует в основном N N -холинорецепторы и в меньшей степени М м -холинорецепторы. В действии никотина на синапсы, имеющие на постсинаптической мембране N -холинорецепторы, по мере увеличения дозы выделяют 3 фазы:

1) возбуждение

2) деполяризационный блок (стойкая деполяризация постсинаптической мембраны)

3) недеполяризационный блок (связан с десен-ситизацией N -холинорецепторов).

При курении проявляется 1-я фаза действия никотина. Никотин стимулирует нейроны симпатических и парасимпатических ганглиев, хромаффинные клетки надпочечников, каротидные клубочки.

В связи с тем, что никотин одновременно стимулирует на уровне ганглиев симпатическую и парасимпатическую иннервацию, некоторые эффекты никотина непостоянны. Так, обычно никотин вызывает миоз, тахикардию, но возможны и противоположные эффекты (мидриаз, брадикардия). Никотин обычно стимулирует моторику желудочно-кишечного тракта, секрецию слюнных и бронхиальных желез.

Постоянным эффектом никотина является его сосудосуживающее действие (большинство сосудов получает только симпатическую иннервацию). Никотин суживает сосуды потому что:

1)стимулирует симпатические ганглии

2) увеличивает выделение адреналина и норадреналина из хромаффинных клеток надпочечников

3) стимулирует N -холинорецепторы каротидных клубочков (рефлекторно активируется сосудодвигательный центр).

В связи с сужением сосудов никотин повышает артериальное давление.

При действии никотина на ЦНС регистрируют не только возбудительные, но и тормозные эффекты. В частности, стимулируя N N - xo линорецепторы клеток Реншоу, никотин может угнетать моносинаптические рефлексы спинного мозга (например, коленный рефлекс). Угнетающее действие никотина, связанное с возбуждением тормозных клеток, возможно и в высших отделах ЦНС.

N -холинорецепторы в синапсах ЦНС могут быть локализованы как на постсинаптических, так и на пресинаптических мембранах. Действуя на пресинаптические N -холинорецепторы, никотин стимулирует высвобождение медиаторов ЦНС - дофамина, норадреналина, ацетилхолина, серотонина, β -эндорфина, а также секрецию некоторых гормонов (АКТГ, антидиуретический гормон).

У курильщиков никотин вызывает повышение настроения, приятное ощущение успокоения или активизации (зависит от типа высшей нервной деятельности). Повышает обучаемость, концентрацию внимания, бдительность, Снижает стрессовые реакции, проявления депрессии. Понижает аппетит и массу тела.

Эйфорию, вызываемую никотином, связывают с повышенным выделением дофамина, антидепрессивное действие и снижение аппетита - с выделением серотонина и норадреналина.

Курение. В сигарете содержится 6-11 мг никотина (смертельная доза никотина для человека около 60 мг). За время курения сигареты в организм курильщика попадает 1-3мг никотина. Токсическое действие никотина умеряется его быстрой элиминацией. Кроме того, к никотину быстро развивается привыкание (толерантность).

Еще больший вред при курении приносят другие вещества (около 500), которые содержатся в табачном дыме и обладают раздражающими и канцерогенными свойствами. Большинство курильщиков страдают воспалительными заболеваниями органов дыхания (ларингит, трахеит, бронхит). Рак легких у курильщиков бывает значительно чаще, чем у некурящих. Курение способствует развитию атеросклероза (никотин повышает в плазме крови уровень ЛПНП и снижает уровень ЛПВП), возникновению тромбозов, остеопорозу (особенно у женщин старше 40 лет).

Курение во время беременности приводит к снижению массы плода, повышению послеродовой смертности детей, отставанию детей в физическом и психическом развитии.

К никотину развивается психическая зависимость; при прекращении курения курильщики испытывают тягостные ощущения: ухудшение настроения, нервозность, беспокойство, напряжение, раздражиельность, агрессивность, снижение концентрации внимания, снижение познавательных способностей, депрессию, повышение аппетита и массы тела. Наиболее выражено большинство этих симптомов через 24-48 ч после прекращения курения. Затем они уменьшаются примерно в течение 2 нед. Многие курильщики, понимая вред курения, тем не менее не могут избавиться от этой вредной привычки.

Для того, чтобы уменьшить неприятные ощущения при прекращении курения, рекомендуют:

1) жевательную резинку, содержащую никотин (2 или 4 мг),

2) трансдермальную терапевтическую систему с никотином - специальный пластырь, равномерно выделяющий небольшие количества никотина в течение 24 ч (наклеивается на здоровые участки кожи),

3) мунштук, содержащий картридж с никотином и ментолом.

Указанные препараты никотина пробуют использовать в качестве лекарственных средств при болезни Альцгеймера, болезни Паркинсона, язвенном колите, синдроме Туретта (моторные и вокальные тики у детей) и некоторых других патологических состояниях.

Острое отравление никотином проявляется такими симптомами, как тошнота, рвота, диарея, боли в животе, головная боль, голово­кружение, потливость, нарушения зрения и слуха, дезориентация. В тяжелых случаях развивается коматозное состояние, нарушается дыхание, падает артериальное давление. В качестве лечебных мероприятий проводят промывание желудка, назначают внутрь активированный уголь, принимают меры борьбы с сосудистым коллапсом и нарушениями дыхания.

Цитизин (алкалоид термопсиса) илобелии (алкалоид лобелии) сходны по строению и действию с никотином, но менее активны и токсичны.

Цитизин в составе таблеток «Табекс» и лобелии в составе таблеток «Лобесил» применяют для облегчения отвыкания от курения.

Цититон (0,15% раствор цитизина) и раствор лобелина иногда вводят внутривенно в качестве рефлекторных стимуляторов дыхания.

3.1.3. M . N -холиномиметики (фармакология)

К М, N -холиномиметикам следует отнести прежде всегоацетилхолин - медиатор, с помощью которого передается возбуждение во всех холинергических синапсах. Выпускается лекарственный пре­парат ацетилхолина. В клинике препарат используют редко из-за кратковременности действия (несколько минут; препарат быстро инактивируется холинэстеразой плазмы крови и ацетилхолинэсте-разой). В то же время ацетилхолин - излюбленный препарат для экспериментальной работы; кратковременность действия позволяет вводить препарат в течение исследования многократно.

Ацетилхолин возбуждает одновременно М- и N -холинорецепторы. Преобладает действие ацетилхолина на М-холинорецепторы. Поэтому обычно проявляются «мускариноподобные» эффекты ацетилхолина. Ацетилхолин оказывает выраженное влияние на сердечно-сосудистую систему:

1) урежает сокращения сердца (отрицательное хронотропное действие);

2) ослабляет сокращения предсердий и в меньшей степени - желудочков (отрицательное инотропное действие);

3) затрудняет проведение импульсов в атриовентрикулярном узле (отрицательное дромотропное действие);

4) расширяет кровеносные сосуды.

Большинство кровеносных сосудов не получает парасимпатической иннервации, но содержит в эндотелии и в гладких мышцах неиннервируемые М 3 -холинорецепторы. При возбуждении ацетил-холином М 3 -холинорецепторов эндотелия из эндотелиальных клеток высвобождается эндотелиальный релаксирующий фактор - NО, который вызывает расширение кровеносных сосудов (при удалении эндотелия ацетилхолин суживает сосуды - стимуляция М 3 -холинорецепторов гладких мышц сосудов). Кроме того, ацетилхолин уменьшает сосудосуживающее влияние симпатической иннервации (стимулирует М 2 -холинорецепторы на окончаниях симпатических адренергических волокон и за счет этого уменьшает выделение норадреналина).

В связи с брадикардией и расширением артерий ацетилхолин в эксперименте при внутривенном введении выражение снижает артериальное давление. Но если блокировать М-холинорецепторы атропином, большие дозы ацетилхолина вызывают не снижение, а повышение артериального давления (рис. 13). На фоне блокады М-холинорецепторов проявляется «никотиноподобное» действие ацетилхолина: возбуждение симпатических ганглиев и хромаффинных клеток надпочечников (высвобождение адреналина и норадреналина, которые суживают кровеносные сосуды).

Ацетилхолин повышает тонус бронхов, стимулирует моторику кишечника, повышает тонус детрузора мочевого пузыря, увеличивает секрецию бронхиальных, пищеварительных и потовых желез.

Путем некоторого изменения структуры ацетилхолина был синтезированкарбахолин, который не разрушается ацетилхолинэсте-разой и действует более продолжительно. Растворы карбахолина иногда используют в виде глазных капель при глаукоме.


3.2. Антихолинэстеразные вещества

Антихолинэстеразные вещества получили свое название в связи со способностью ингибировать холинэстеразы. Антихолинэстеразные вещества ингибируют ацетилхолинэстеразу (фермент, гидро-лизующий ацетилхолин в холинергических синапсах) и бутирилхолинэстеразу (холинэстераза плазмы крови; псевдохолинэстераза). Ингибируя ацетилхолинэстеразу в холинергических синапсах, антихолинэстеразные вещества препятствуют гидролизу ацетилхолина и в связи с этим значительно усиливают и удлиняют действие ацетилхолина. Непосредственно на холинорецепторы антихолинэстеразные вещества либо совсем не действуют, либо это действие выражено незначительно.

Таким образом, при введении в организм антихолинэстеразных веществ все возникающие при этом эффекты обусловлены действием эндогенного ацетилхолина. При этом отмечаются: сужение зрачков глаз, спазм аккомодации, брадикардия, повышение тонуса гладких мышц внутренних органов (бронхов, желудочно-кишечного тракта, мочевого пузыря), увеличение секреции бронхиальных, пищеварительных, потовых желез. Отчетливо выражено стимулирующее влияние антихолинэстеразных веществ на нервно-мышечные синапсы, в связи с чем эти вещества повышают тонус скелетных мышц. Те антихо-линэстеразные вещества, которые легко проникают через гематоэн-цефалический барьер, оказывают возбуждающее действие на ЦНС.

Различают антихолинэстеразные вещества обратимого и необрати­мого действия.

Кантихолинэстеразным веществам обратимого действия относят физостигмин, неостигмин, пиридостигмин, эдрофоний, галантамин, ривастигмин, донепезил. Указанные вещества (за исключением эдрофония) обратимо связываются с анионным и эстеразным центрами ацетилхолинэстеразы и ингибируют активность фермента в течение нескольких часов. Эдрофоний взаимодействует только с анионным центром фермента и действует примерно 10 мин.

Первым антихолинэстеразным веществом, примененным в медицинской практике, былфизостигмин - алкалоид калабарских бобов, произрастающих в Западной Африке. Растворы физостигмина иногда используют в глазной практике при глаукоме в качестве средства, суживающего зрачки и улучшающего отток внутриглазной жидкости.

Неостигмин (прозерин) - синтетический антихолинэстеразный препарат; четвертичное аммониевое соединение. Действие неостигмина, как и других антихолинэстеразных веществ, связано с тем, что он ингибирует ацетилхолинэстеразу и тем самым усиливает и пролонгирует действие эндогенного ацетилхолина. Так же, как и при введении ацетилхолина, при этом преобладают эффекты, связанные с возбуждением парасимпатической иннервации. Кроме того, облегчается нервно-мышечная передача.

Препарат назначают внутрь и парентерально (под кожу, в вену). Неостигмин - полярное соединение и плохо всасывается в желудочно-кишечном тракте. Поэтому доза неостигмина для приема внутрь значительно выше, чем для парентерального введения (внутрь 0,015г, парентерально 0,0005г). Длительность действия неостигмина около 4 ч.

Фармакологические эффекты неостигмина:

1)сужение зрачков (миоз) - сокращение круговой мышцы радужки;

2)спазм акккомодации - хрусталик становится более выпуклым, так как вследствие сокращения ресничной (цилиарной) мышцы расслабляется циннова связка (ресничный поясок); глаз устанавливается на ближнюю точку видения;

3)брадикардия вследствие усиления тормозного влияния блуждающего нерва на синоатриальный узел;

4)затруднение атриовентрикулярной проводимости в связи с усилением тормозного влияния блуждающего нерва на атриовентрикулярный узел;

5)повышение тонуса гладких мышц внутренних органов (бронхи, желудочно-кишечный тракт, мочевой пузырь, матка);

6)увеличение секреции экзокринных желез (слюнные, бронхиальные железы, железы желудка и кишечника, потовые железы);

7)облегчение нервно-мышечной передачи - усиление сокращений скелетных мышц.

Показания к применению неостигмина

1.Миастения - аутоиммунное заболевание, при котором образуются аутоантитела к N м -холинорецепторам скелетных мышц, уменьшается количество N м -холинорецепторов и нарушается нервно-мышечная передача.

Заболевание проявляется слабостью скелетных мышц. В первую очередь снижается тонус экстраокулярных мышц, мышц лица, глотки, гортани. Развиваются птоз (опущение век), диплопия, нарушение жевания, а также дисфагия и дизартрия. В тяжелых случаях возможно ослабление сократимости мышц шеи, конечностей; при миастеническом кризе может быть нарушение дыхания из-за слабости дыхательных мышц.

Неостигмин при миастении оказывает симптоматическое действие, восстанавливая на время нервно-мышечную передачу. Препарат назначают внутрь, а при миастеническом кризе (сильная мышечная слабость, нарушение глотания, дыхания) - под кожу или внутримышечно.

Для устранения мускариноподобных эффектов неостигмина предварительно вводят М-холиноблокатор атропин. Не рекомендуют вводить неостигмин и атропин одновременно, так как атропин сначала может вызывать брадикардию.

2.В качестве антагониста курареподобных средств антидеполяризующего конкурентного действия.

3.Послеоперационная атония кишечника или мочевого пузыря. Препарат вводят под кожу или внутримышечно.

4.Глаукома; применяют редко

Побочные эффекты неостигмина: миоз, спазм аккомодации, увеличение секреции слюнных и бронхиальных желез, бронхоспазм, тошнота, рвота, диарея, спастические боли в животе, артериальная гипотензия, аллергические реакции. При передозировке неостигмина возможно развитие холинергического криза, который по симптомам сходен с миастеническим кризом (нарушение нервно-мышечной передачи, мышечная слабость).

Пиридостигмин (местинон) сходен по действию с неостигмином. Применяется при миастении. Действует более продолжительно - около 6 ч; мускариноподобные эффекты менее выражены.

Эдрофоний (тензилон) при внутривенном введении действует через 30-60 с; продолжительность действия около 10 мин. Эдрофоний применяют для диагностики миастении, а также для дифференцировки миастенического и холинергического кризов (холинергический криз может быть связан с передозировкой антихолинэстеразных средств и, как и миастенический криз, проявляется слабостью скелетных мышц). При миастеническом кризе эдрофоний проявляет терапевтический эффект; при холинергическом кризе нервно-мышечная передача ухудшается, однако действие эдрофония быстро проходит.

При мышечных параличах, связанных с нарушениями ЦНС, например, при параличах после полиомиелита, применяютгалантамин (нивалин), хорошо проникающий через гематоэнцефалический барьер.

Кроме того, галантамин используют при атонии кишечника и мочевого пузыря, при миастении, в качестве антагониста курареподобных средств антидеполяризующего конкурентного действия.

Галантамин был одним из первых антихолинэстеразных средств, которые стали применять при болезни Альцгеймера. При этом заболевании применяют такжеривастигмин (экселон).

Однако в настоящее время наиболее эффективным препаратом при болезни Альцгеймера считаютдонепезил, который избирательно ингибирует ацетилхолинэстеразуЦНС, мало влияя на периферическую ацетилхолинэстеразу.

Противопоказаниями к назначению антихолинэстеразных средств являются эпилепсия, болезнь Паркинсона, бронхиальная астма, стенокардия, нарушения проводящей системы сердца.

Кантихолинэстеразным средствам необратимого действия относятся фосфорорганические соединения (ФОС). В отличие от указанных выше антихолинэстеразных веществ ФОС на длительное время инактивируют ацетилхолинэстеразу. При этом происходит «старение» фермента и его инактивация становится практически необратимой.

ФОС отличаются высокой токсичностью. Некоторые из этих веществ используют в качестве инсектицидных средств. Так, в качестве инсектицидов применяются карбофос, тиофос и др. Эти вещества в связи с их широким применением в быту нередко бывают причиной отравлений (отравления возможны даже при попадании этих веществ на кожу, так как они легко всасываются через кожную поверхность).

Отравления фосфорорганическими соединениями проявляются такими симптомами, как миоз, потливость, слюнотечение, удушье (бронхоспазм и увеличение секреции бронхиальных желез), бради-кардия, а затем тахикардия, снижение, а затем повышение артериального давления, психомоторное возбуждение, рвота, спастические боли в животе. В более тяжелых случаях это сопровождается мышечными подергиваниями и судорогами; возбуждение сменяется заторможенностью, артериальное давление падает, развивается коматозное состояние; смерть наступает от паралича дыхательного центра.

Большинство этих симптомов связано с возбуждением парасимпатической иннервации. Поэтому при отравлениях фосфорорганическими соединениями прежде всего назначают вещества, блокирующие парасимпатическую иннервацию. Обычно применяют М-холиноблокаторы, чаще всего атропин, который в этих случаях вводят внутривенно в больших дозах (2-4 мл 0,1% раствора) и при необходимости повторяют введение. Кроме того, назначаютреактиваторы холинэстеразы, которые при их применении в первые часы после отравления восстанавливают активность ингибированной ацетилхолинэстеразы. К таким препаратам относятсятримедоксим (дипироксим) иизонитрозин. При отравлениях антихолинэстеразными средствами обратимого действия (физостигмин, неостигмин и др.) эти вещества неэффективны.

При повышении артериального давления (может быть связано с активацией симпатической иннервации и центральным действием ФОС) применяют гипотензивные средства. Дополнительными мероприятиями являются дача кислорода и, при необходимости, искусственное дыхание. При попадании фосфорорганических соединений на кожу надо вытереть ее сухим тампоном, а затем вымыть 5-6% раствором натрия гидрокарбоната и теплой водой с мылом.

Б. Средства, блокирующие холинергические синапсы

3.3. Вещества, уменьшающие высвобождение ацетилхолина

Ботулиновый токсин вызывает протеолиз синаптобревина (белок мебраны везикул, взаимодействующий с белками пресинаптической мембраны) и поэтому препятствует экзоцитозу везикул с ацетилхолином. Лекарственный препарат ботулинового токсина - ботокс применяют при блефароспазме, спастической кривошее. Препарат вводят в спазмированные мышцы, после чего наступает их длительное расслабление.

Ботокс используют также в косметических целях. При введении препарата в мышцы лица происходят их расслабление и разглаживание морщин.

ФУНКЦИИ ХОЛИНЕРГИЧЕСКИХ СИНАПСОВ
Холинергические синапсы локализованы в ЦНС (ацетилхолин регулирует моторику, пробуждение, память, обучение), а также в вегетативных ганглиях, мозговом слое надпочечников, каротидных клубочках, скелетных мышцах и внутренних органах, получающих постганглионарные парасимпатические волокна.
В скелетных мышцах синапсы занимают небольшую часть мембраны и изолированы друг от друга. В верхнем шейном ганглии около 100000 нейронов упакованы в объеме 2 - 3 мм3.
Ацетилхолин синтезируется в аксоплазме холинергических окончаний из ацетилкоэнзима А (митохондриального происхождения) и незаменимого аминоспирта холина при участии фермента холин-ацетилтрансферазы (холинацетилаза). Иммуноцитохимический метод определения этого фермента позволяет установить локализацию холинергических нейронов.
Ацетилхолин депонируется в синаптических пузырьках (везикулах) в связи с АТФ и нейропептидами (вазоактивный интестинальный пептид, нейропептид Y). Квантами выделяется при деполяризации пресинаптической мембраны и возбуждает холинорецепторы. В окончании двигательного нерва находится около 300 000 синаптических пузырьков, в каждом из них депонировано от 1000 до 50000 молекул ацетилхолина.
Весь ацетилхолин, находящийся в синаптической щели, подвергается гидролизу ферментом ацетилхолинэстеразой (истинная холинэстераза) с образованием холина и уксусной кислоты. Одна молекула медиатора инактивируется в течение 1 мс. Ацетилхолинэстераза локализована в аксонах, дендритах, перикарионе, на пресинаптической и постсинаптической мембранах.
Холин в 1000 - 10 000 раз менее активен по сравнению с ацетилхолином; 50 % его молекул подвергается нейрональному захвату и вновь участвует в синтезе ацетилхолина. Уксусная кислота окисляется в цикле трикарбоновых кислот.
Псевдохолинэстераза (бутирилхолинэстераза) крови, печени, нейроглии катализирует гидролиз эфиров растительного происхождения и лекарственных средств.
Холинорецепторы
Холинорецепторы представляют собой гликопротеины, состоящие из нескольких субъединиц. Большинство холинорецепторов являются резервными. На постсинаптической мембране в нервномышечном синапсе расположено до 100 млн холинорецепторов, из них не функционируют 40 - 99 %. В холин ер гическом синапсе на гладкой мышце находятся около 1,8 млн холинорецепторов, резервными являются 90 - 99%.
В 1914г. Генри Дейл установил, что эфиры холина могут оказывать как мускариноподобный, так и никотиноноподобный эффекты. В соответствии с химической чувствительностью холинорецепторы классифицируют на мускариночувствительные (М) и никотиночувствительные (Н) (табл. 20). Ацетилхолин имеет гибкую молекулу, способную в различных стереоконформациях возбуждать Ми Н-холинорецепторы.
М-холинорецепторы возбуждаются ядом мухомора мускарином и блокируются атропином. Они локализованы в нервной системе и внутренних органах, получающих парасимпатическую иннервацию (вызывают угнетение сердца, сокращение гладких мышц, повышают секреторную функцию экзокринных желез) (табл. 15 в лекции 9). М-холинорецепторы ассоциированы с G-белками и имеют 7 сегментов, пересекающих, как серпантин, клеточную мембрану.
Молекулярное клонирование позволило выделить пять типов М-холинорецепторов:

  1. М-холинорецепторы ЦНС (лимбическая система, базальные ганглии, ретикулярная формация) и вегетативных ганглиев;
  2. М2-холинорецепторы сердца (снижают частоту сердечных сокращений, атриовентрикулярную проводимость и потребность миокарда в кислороде, ослабляют сокращения предсердий);
  3. М3-холинорецепторы:
  • гладких мышц (вызывают сужение зрачков, спазм аккомодации, бронхоспазм, спазм желчевыводящих путей, мочеточников, сокращение мочевого пузыря, матки, усиливают перистальтику кишечника, расслабляют сфинктеры);
  • желез (вызывают слезотечение, потоотделение, обильное отделение жидкой, бедной белком слюны, бронхорею, секрецию кислого желудочного сока).

  • Таблица 20. Холинорецепторы


Рецепторы

Агонисты

Антагонисты

Локализация

Функции

Эффекторный
механизм

Мускариночувствительные

М1

Оксотреморин

Пиренцепин

ЦНС

Контроль психических и моторных функций, реакции пробуждения и обучения

Активация фосфолипазы С посредством Gq/11- белка

Вегетативные ганглии

Деполяризация (поздний
постсинаптический
потенциал)

M2


Метоктрамин

Сердце: синусный узел

Замедление спонтанной
деполяризации,
гиперполяризация

Ингибирование аденилатциклазы посредством G; -белка, активация К+-каналов

предсердия

Укорочение потенциала действия, уменьшение сократимости

атриовентрикулярный
узел

Уменьшение
проводимости

желудочки

Незначительное
уменьшение
сократимости

М3


Гексагидросила
дифенидол

Гладкие мышцы

Сокращение

Аналогичен М1

Экзокринные железы

Повышение секреторной функции

М4


Тропикамид
Химбацин

Альвеолы легких

-

Аналогичен М2

М5



ЦНС (черная субстанция среднего мозга, гиппокамп)


Аналогичен М1

Никотиночувствительные

Нн

Диметилфенил
пиперазин
Цитизин
Эпибатидин

Арфонад

ЦНС

Аналогичны функциям М,

Открытие каналов для
Na+, K+, Са2+

Вегетативные ганглии

Деполяризация и возбуждение постганглионарных нейронов

Мозговой слой надпочечников

Секреция адреналина и норадреналина

Каротидные клубочки

Рефлекторное тонизирование дыхательного центра

нм

Фенилтримети
ламмоний

Тубокурарин-
хлорид
а-
Бунгаротоксин

Скелетные мышцы

Деполяризация концевой пластинки, сокращение

Внесинаптические М3-холинорецепторы находятся в эндотелии сосудов и регулируют образование сосудорасширяющего фактора - окиси азота (КО).

  1. М4- и М5-холинорецепторы имеют меньшее функциональное значение.
М1-, М3- и М5-холинорецепторы, активируя посредством Gq^-белка фосфолипазу С клеточной мембраны, увеличивают синтез вторичных мессенджеров - диацилглицерола и инозитолтрифосфата. Диацилглицерол активирует протеинкиназу С, инозитолтрифосфат освобождает ионы кальция из эндоплазматического ретикулума,

М2- и М4-холинорецепторы при участии G- и G0-белков ингибируют аденилатциклазу (тормозят синтез цАМФ), блокируют кальциевые каналы, а также повышают проводимость калиевых каналов синусного узла.
Дополнительные эффекты М-холинорецепторов - мобилизация арахидоновой кислоты и активация гуанилатциклазы.
Н-холинорецепторы возбуждаются алкалоидом табака никотином в малых дозах, блокируются никотином в больших дозах.
Биохимическая идентификация и выделение Н-холинорецепторов стали возможны благодаря открытию их избирательного высокомолекулярного лиганда а-бунгаротоксина - яда тайваньской гадюки Bungarus multicintus и кобры Naja naja. Н-холинорецепторы находятся в ионных каналах, в течение миллисекунд они повышают проницаемость каналов для Na+, K+ и Са2+ (через один канал мембраны скелетной мышцы проходит 5 - 107 ионов натрия за 1 с).
Таблица 21. Классификация лекарственных средств, влияющих на холинерги-ческие синапсы (указаны основные препараты)


Холиномиметики

М, Н-холиномиметики

ацетилхолин-хлорид, карбахолин

М-холиномиметики

пилокарпин, ацеклидин

Н-холиномиметики
(ганглиостимуляторы)

цитизин, лобелин

Средства, повышающие выделение ацетилхолина


цисаприд

Антихолинэстеразные средства

Обратимые блокаторы

физостигмин, галантамин, амиридин, прозерин

Необратимые блокаторы

армин

Холиноблокаторы

М-холиноблокаторы

атропин, скополамин, платифиллин, метацин, пиренцепин, ипратропия бромид

Н-холиноблокаторы (ганглиоблокаторы)

бензогексоний, пентамин, гигроний, арфонад, пахикарпин, пирилен

Миорелаксанты

Антидеполяризующие

тубокурарин-хлорид, пипекурония бромид, атракурия бесилат, мелликтин

Деполяризующие

дитилин

Н-холинорецепторы широко представлены в организме. Их классифицируют на Н- холинорецепторы нейронального (Нн) и мышечного (Нм) типов.
Нейрональные Нн-холинорецепторы представляют собой пентамеры и состоят из субъединиц а2 - а9, и в2 - в4 (четыре трансмембранные петли). Локализация нейрональных Н-холинорецепторов следующая:

  • кора больших полушарий, продолговатый мозг, клетки Реншоу спинного мозга, нейрогипофиз (повышают секрецию вазопрессина);
  • вегетативные ганглии (участвуют в проведении импульсов с преганглионарных волокон на постганглионарные);
  • мозговой слой надпочечников (повышают секрецию адреналина и норадреналина);
  • каротидные клубочки (участвуют в рефлекторном тонизировании дыхательного центра). Мышечные Нм-холинорецепторы вызывают сокращение скелетных мышц. Они представляют
собой смесь мономера и димера. Мономер состоит из пяти субъединиц (а1 - а2, в, Y, ?, 5), окружающих ионные каналы. Для открытия ионных каналов необходимо связывание ацетилхолина с двумя а-субъединицами.
Пресинаптические М-холинорецепторы тормозят, пресинаптические Н-холинорецепторы стимулируют высвобождение ацетилхолина.
М, Н-ХОЛИНОМИМЕТИКИ
АЦЕТИЛХОЛИН-ХЛОРИД, синтезированный в 1867 г. А. Бейером, оказывает сильное холиномиметическое действие. Эффект ацетилхолина кратковременный вследствие быстрого гидролиза ферментами группы холинэстераз.

Эффекты ацетилхолина-хлорида зависят от дозы:

  • в дозах 0,1 - 0,5 мкг/кг он воздействует на М-холинорецепторы и вызывает эффекты возбуждения парасимпатической системы;
  • в дозах 2 - 5 мкг/кг воздействует на М- и Н-холинорецепторы, при этом Н-холиномиметическое действие соответствует эффектам симпатической системы.
Избирательное возбуждение Н-холинорецепторов возможно только после блокады М- холинорецепторов.
Ацетилхолин при введении в вену оказывает значительное влияние на сердечно-сосудистую систему:
  • вызывает генерализованное расширение сосудов и артериальную гипотензию (освобождает NO из эндотелия);
  • подавляет спонтанную диастолическую деполяризацию и удлиняет рефрактерный период в синусном узле, что сопровождается снижением частоты сердечных сокращений;
  • ослабляет сокращения предсердий, укорачивает в них потенциал действия и рефрактерный период (опасность трепетания и фибрилляции);
  • удлиняет рефрактерный период и нарушает проводимость в атриовентрикулярном узле (опасность блокады);
  • снижает автоматизм волокон Пуркинье, умеренно ослабляет сокращения желудочков. Ацетилхолин-хлорид используют преимущественно в экспериментальной фармакологии. Иногда
его вводят под кожу при атонии кишечника и мочевого пузыря и паралитической непроходимости кишечника, а также вливают в артерии для их расширения при облитерирующих заболеваниях. Инфузия ацетилхолина в вену недопустима из-за опасности остановки сердца и коллапса.
КАРБАХОЛИН - эфирхолина и карбаминовой кислоты (H2N - COOH), не гидролизуется холинэстеразой, оказывает слабое и длительное действие. Этот препарат применяют в глазных каплях при глаукоме, вводят под кожу или в мышцы при атонии кишечника и мочевого пузыря (преимущественно стимулирует гладкие мышцы кишечника и мочевыводящей системы).
М-ХОЛИНОМИМЕТИКИ
М-холиномиметики избирательно возбуждают М-холинорецепторы ЦНС и внутренних органов. Для аффинитета к М-холинорецепторам наибольшее значение имеет расстояние между активными центрами - катионной головкой и эфирной связью. Оно должно составлять два атома углерода (0,3 нм). Большинство соединений имеет ответвление у углерода, ближайшего к эфирному кислороду. У типичного препарата этой группы пилокарпина расстояние между азотом имидазольного гетероцикла и кислородом лактонного кольца составляет пять атомов углерода, однако при вращении молекулы вокруг метиленового мостика функциональные группы сближаются на расстояние 0,3 нм. Другой препарат - ацеклидин представляет собой эфир уксусной кислоты и аминоспирта хинуклидиновой структуры. У ацеклидина расстояние между активными центрами равно двум атомам углерода.
ПИЛОКАРПИН - алкалоид листьев южноамериканского кустарника пилокарпус перистолистный (Хаборанди), выделен в 1875 г., используется для лечения глаукомы.
Пилокарпин оказывает местное и резорбтивное влияние. Его местное действие на глаз обусловлено возбуждением М3-холинорецепторов, что сопровождается сокращением круговой и цилиарной мышц. Эффекты пилокарпина следующие:
  • сужение зрачков (миоз; греч. meiosis - уменьшение) - результат сокращения круговой мышцы радужки;
  • снижение внутриглазного давления - при сужении зрачков радужка становится тонкой, ее корень освобождает угол передней камеры, это облегчает отток внутриглазной жидкости в дренажную систему глаза - фонтановы пространства, шлеммов канал и вены глазного яблока;
  • спазм аккомодации (искусственная близорукость) - при сокращении цилиарной (аккомодационной) мышцы уменьшается натяжение цинновой связи и капсулы хрусталика; хрусталик, приобретая в силу упругости выпуклую форму, создает четкое изображение на сетчатке от близко расположенных предметов;
  • макропсия - предметы кажутся увеличенными и видны нечетко.
Показания к применению пилокарпина - курсовое лечение глаукомы до оперативного вмешательства (иридэктомия) и купирование глаукоматозного криза. Для курсового лечения используют 1 - 2 % растворы пилокарпина гидрохлорида в глазных каплях 3 - 4 раза в день (при увеличении концентрации гипотензивное влияние не усиливается, но появляются побочные эффекты). Действие пилокарпина пролонгируют добавлением метилцеллюлозы, карбоксиметилцеллюлозы или поливинилового спирта. Применяют также глазные пленки. В течение года необходима отмена пилокарпина на один - три месяца (вместо него применяют в- адреноблокаторы тимолол или проксодолол). Выпускают комбинированные препараты пилокарпина
  • глазные пленки ПИЛАРЕН (с адреналина гидрохлоридом), глазные капли ФОТИЛ (с тимололом) и ПРОКСОФЕЛИН (с проксодололом).
При глаукоматозном кризе закапывают в глаз 1 - 2 % растворы: в первый час - каждые 15 мин, во второй час - два раза, затем - один раз через 4 ч. Применяют глазные капли тимолола два раза в день, назначают внутрь ингибиторы карбоангидразы (диакарб, дорзоламида гидрохлорид).
У больных глаукомой, длительно применяющих пилокарпин, возможны фиброзное перерождение внутриглазных мышц, необратимый миоз, задние синехии (сращение радужки с хрусталиком), повышается проницаемость капилляров (отек, кровоизлияния), изменяется состав внутриглазной жидкости, нарушается темновая адаптация из-за смещения стекловидного тела (затруднена работа при плохом освещении).
Резорбтивное действие пилокарпина направлено на М2-холинорецепторы сердца и М3- холинорецепторы гладких мышц и экзокринных желез. Пилокарпин использовали для лечения стоматита и уремии, так как при введении под кожу 10 - 15 мг препарата за 2 - 3 ч выделяется 1л богатой лизоцимом слюны и 2 - 3 л пота, содержащего большое количество азотистых шлаков.
АЦЕКЛИДИН по фармакологическим свойствам близок пилокарпину. Его вводят под кожу при атонии, паралитической непроходимости кишечника, атонии мочевого пузыря, пониженном тонусе и субинволюции матки, маточном кровотечении в послеродовом периоде, а также используют в глазных каплях при глаукоме. При длительном применении ацеклидина в глазных каплях возможны раздражение конъюнктивы, инъекция сосудов глаза, боль в глазу.
М, Н-холиномиметики и М-холиномиметики в глазных каплях и пленках противопоказаны при ирите и иридоциклите. Их не применяют для резорбтивного действия при брадикардии, стенокардии, органических заболеваниях сердца, атеросклерозе, бронхиальной астме, хронической обструктивной болезни легких, кровотечениях из желудка и кишечника, воспалительных заболеваниях брюшной полости до оперативного вмешательства, механической непроходимости кишечника, эпилепсии, других судорожных заболеваниях, беременности.
Яд МУСКАРИН находится в мухоморе в очень низкой концентрации (0,003 %), является четвертичным амином и не проникает в ЦНС. Мускарин вызывает брадикардию, атриовентрикулярную блокаду, артериальную гипотензию, бронхоспазм, бронхорею, цианоз, рвоту, усиленную болезненную перистальтику кишечника, диарею, потоотделение, саливацию, сужение зрачков, спазм аккомодации.
Мухомор содержит также третичные амины - производные изоксазола - иботеновую кислоту и ее метаболит мусцимол (0,02 - 0,17 %). Мусцимол, нарушая функцию ГАМК-ергических синапсов ЦНС, вызывает эйфорию, галлюцинации, сон с яркими сновидениями, атаксию, мышечную фибрилляцию. При тяжелом отравлении развиваются гипертермия, миоклонус, судороги и кома. Смерть наступает от паралича дыхательного центра. Известно, что великий драматург Древней Греции Еврипид (ок. 480 - 406 до н. э.) с женой и тремя детьми умер от отравления мухомором.
Неотложные меры помощи при отравлении мухомором - промывание желудка с углем активированным, энтеросорбция, ингаляция кислорода, инфузионная терапия. В мышцы вводят конкурентный антагонист мускарина - М-холиноблокатор атропин. Для ослабления токсических эффектов мусцимола применяют блокаторы кальциевых каналов. На протяжении двух недель после ликвидации симптомов острого отравления ограничивают употребление тираминсодержащей пищи.
АРЕКОЛИН - алкалоид бетельного ореха (плод пальмы арека катеху, произрастающей в ЮгоВосточной Азии). Жевание бетеля (бетельный орех с добавлением извести и перца Piper betle) широко распространено в Индии и других странах этого региона, так как ареколин, возбуждая М1- холинорецепторы ЦНС, вызывает эйфорию.

Н-ХОЛИНОМИМЕТИКИ (ГАНГЛИОСТИМУЛЯТОРЫ)
Н-холиномиметическим влиянием обладают агонисты нейрональных НН-холинорецепторов каротидных клубочков, симпатических и парасимпатических ганглиев и мозгового слоя надпочечников.
Препараты этой группы не влияют на Нм-холинорецепторы скелетных мышц.
Терапевтическое значение имеет возбуждение Н-холинорецепторов каротидных клубочков.
Как известно, в каротидных клубочках ацетилхолин играет роль медиатора, но не эфферентных, как обычно, а афферентных импульсов. Клетки каротидных клубочков богаты митохондриями и синаптическими пузырьками, содержащими ацетилхолин. К этим клеткам подходят окончания каротидной веточки языкоглоточного нерва. Ткань каротидных клубочков отличается богатым кровоснабжением и значительным потреблением кислорода. Между тем, каротидные клубочки не производят механической сократительной работы и не несут энергетических затрат на химический синтез. Энергия расходуется на функционирование Na+, К+-насоса, так как через мембрану клеток каротидных клубочков входят ионы натрия даже при потенциале покоя (мембрана легко деполяризуется). Остановка насоса при гипоксии сопровождается деполяризацией и освобождением ацетилхолина. Медиатор, возбуждая Н-холинорецепторы на окончаниях каротидного нерва, создает поток импульсов для рефлекторного тонизирования дыхательного центра.
Н-холиномиметики, рефлекторно тонизирующие дыхательный центр, имеют растительное происхождение:

  • ЦИТИЗИН - алкалоид ракитника и термопсиса ланцетолистного, производное пиримидина,
сильный Н-холиномиметик (используется в 0,15 % растворе под названием цититон).
  • ЛОБЕЛИИ - алкалоид лобелии, произрастающей в тропических странах, производное
пиперидина.
Оба средства действуют кратковременно - в течение 2 - 5 мин. Их вводят в вену (без раствора глюкозы) при угнетении дыхательного центра у больных с сохраненной рефлекторной возбудимостью, например, при отравлении наркотическими анальгетиками, угарным газом.
Лобелии, возбуждая центр блуждающего нерва в продолговатом мозге, вызывает брадикардию и артериальную гипотензию. Позже АД повышается вследствие стимуляции симпатических ганглиев и мозгового слоя надпочечников. Цитизин обладает только прессорным влиянием.
При введении Н-холиномиметиков под кожу и в мышцы для тонизирования дыхательного центра требуется применять дозы в 10 - 20 раз большие, чем дозы для внутривенного введения. При этом цитизин и лобелии как третичные амины проникают в ЦНС и, возбуждая Н-холинорецепторы головного мозга, вызывают рвоту, тонико-клонические судороги, брадикардию и остановку сердца.
Следует отметить, что при нарушениях дыхания искусственная вентиляция легких всегда надежнее и эффективнее любых дыхательных
аналептиков. К последним прибегают лишь тогда, когда невозможно провести искусственное дыхание.
Н-холиномиметики противопоказаны при артериальной гипертензии, атеросклерозе, кровотечении из крупных сосудов, отеке легких.
Цитизин, лобелии и близкий к ним по действию алкалоид ежовника безлистного АНАБАЗИН нашли применение в качестве средств для отвыкания от курения. Прием таблеток «ТАБЕКС» (цитизин), «ЛОБЕСИЛ» (лобелии), наклеивание в полости рта пленок с цитизином и анабазином и использование жевательной резинки «ГАМИБАЗИН» (анабазин) уменьшают влечение к никотину и облегчают тягостные явления, связанные с прекращением курения. Механизм действия этих средств обусловлен возбуждением центральных Н-холинорецепторов (происходит замена сильного наркотика более слабым). Успех такой терапии возможен при твердом решении курящего человека прекратить курение.
Применение таблеток с лобелином, цитизином и анабазином противопоказано при язвенной болезни желудка и двенадцатиперстной кишки, органической патологии сердечно-сосудистой системы. При передозировке препаратов развиваются слабость, раздражительность, головокружение, тахикардия, артериальная гипертензия, расширение зрачков, тошнота, рвота.
ЛЕКАРСТВЕННЫЕ СРЕДСТВА, ПОВЫШАЮЩИЕ ВЫДЕЛЕНИЕ АЦЕТИЛХОЛИНА
ЦИСАПРИД (КООРДИНАКС, ПЕРИСТИЛ), стимулируя гладкую мускулатуру пищеварительного тракта, действует как прокинетик. Он является агонистом пресинаптических рецепторов серотонина 5-НТ4, облегчающих освобождение ацетилхолина, поэтому повышает
выделение ацетилхолина из окончаний постганглионарных парасимпатических волокон мезентериального сплетения. Цисаприд тонизирует нижний сфинктер пищевода, препятствует забросу содержимого желудка в пищевод, ускоряет перистальтику желудка, тонкого и толстого кишечника.
Цисаприд назначают внутрь в таблетках и суспензии при рефлюкс-эзофагите, парезе желудка, хроническом запоре. В педиатрии этот препарат показан при упорном срыгивании и рвоте у младенцев.
Побочное действие цисаприда - боль в животе, диарея, головная боль, головокружение, аллергические реакции, в редких случаях возникают экстрапирамидные расстройства и аритмия. Цисаприд противопоказан при кровотечении из пищеварительного тракта, его перфорации, подозрении на обструкгивную кишечную непроходимость, беременности, аллергии. При лечении цисапридом прерывают грудное вскармливание. С осторожностью препарат назначают пациентам с сердечно-сосудистыми заболеваниями, сниженной концентрацией калия и магния в крови, пожилым больным.