Для работы необходимы : камертон. Объект исследования – человек.

Проведение работы : Испытуемого усаживают на стул и прикладывают к сосцевидному отростку звучащий камертон. В нормальных условиях испытуемый слышит звук, который постепенно угасает. Как только звук исчезает, камертон подносят к уху. Звук вновь появляется. При повреждении звукопроводящего аппарата наблюдается обратное явление –звкуа камертона не слышно тогда, когда он располагается возле внешнего слухового прохода и становится слышным, когда камертон переносят к сосцевидному отростку.

Результаты работы и их оформление . Полученые данные записывают в протокол и сравнивают с показателями у разных испытуемых.

ТЕСТОВЫЕ ЗАДАНИЯ ДЛЯ САМОКОНТРОЛЯ УРОВНЯ знаний:


1. В эксперименте на кошке изучали строение центральных отделов слуховой сенсорной системы. Вследствие разрушения одной из структур среднего мозга кошка потеряла ориентировочный рефлекс на сильные звуковые сигналы. Указать, какие структуры были разрушены:

A. Верхние бугры четверохолмия

B. Черное вещество

C. Вестибулярные ядра Дейтерса

D. Красные ядра

E. Нижние бугры четверохолмия

2. У 60-летнего обследуемого обнаружено увеличение порога восприятия звуков высокой частоты. Указать, нарушения каких структур слуховой сенсорной системы привело к такому состоянию:

A. Евстахиевой трубы

B. Кортиевого органа – ближе к овальному окну

C. Кортиевого органа – ближе к геликотремии

D. Мышц среднего уха

E. Барабанной перепонки

3. У исследуемого животного разрушили среднюю часть завитка внутреннего уха. Указать, к нарушениям какой частоты восприятия звуков это приведет:

A. Высокой частоты

B. Низкой частоты

C. Средней частоты

D. Высокой и низкой частот

E. Высокой и средней частот

4. При обследовании 50-летнего работника, кузнеца по профессии, установлено, что он лучше воспринимает звуки обоими ушами при костной проводимости, чем при воздушной. Указать, где, вероятней всего, локализуется повреждение:

A. Медиальные коленчатые тела таламуса

B. Нижние холмы четверохолмия

C. Барабанная перепонка

D. Звукопроводящий аппарат

E. Первичная слуховая кора

5. Среди нижеприведенных показателей указать, в каких единицах измеряется интенсивность звука:

A. Диоптриях

B. Дальтонах

C. Граммах

D. Децибеллах

E. Микронах

6. Слуховая ориентация человека в пространстве возможна за счет определенных факторов, где наибольшую роль играет:

A. Форма ушной раковины

B. Наличие свободного внешнего слухового прохода

C. Наличие бинаурального слуха

D. Интерауральное распределение звука по времени

E. Интерауральное распределение звука по интенсивности

7. Путем клинических наблюдений доказано, что острота слуха у человека с возрастом снижается и находится в диапазоне:

A. Высоких частот (25000 – 40000Гц)

B. Низких частот (16 –9000Гц)

C. Средних частот (9000-20000Гц)

E. Независимо от диапазона звукового восприятия

8. В больницу доставлен мужчина, пострадавший во время сильного взрыва. При обследовании выявлено, что барабанная перепонка не повреждена, т.к. сработал защитный рефлекс, который препятствует разрыву барабанной перепонки от сильной звуковой волны. Этот рефлекс реализуется за счет:

A. Расслабления m.tensor tympani

B. Сокращения m.tensor tympani

C. Расслабления m. stapedius

D. Сокращения m. auricularis anterior

E. Расслабления m. auricularis anterior

9. Установлено, что чрезвычайно высокая чувствительность слуховой сенсорной системы обусловлена не только разницей площади стремени (3,2х10 -6 м 2) и барабанной перепонки (7,0х10 -5 м 2), а и тем минимальным давлением на барабанную перепонку, который заставляет ее колебаться. Указать величину этого давления:

A. 0,00001 мг/м 2

B. 0,0001 мг/м 2

C. 0,001 мг/м 2

D. 0,01 мг/м 2

E. 0,1 мг/м 2

10. При зачислении 23-летнего работника на должность клепальщика его ухо воспринимало колебания в диапазоне 16-20000 Гц, а после десяти лет работы диапазон звуковых частот изменился до 16-9000Гц. Указать возможную причину изменения восприятия звуковых частот:

A. Отосклероз

B. Повреждение текториальной мембраны

C. Повреждение средней части основной мембраны

D. Повреждение дистальной части основной мембраны

E. Повреждение проксимальной части основной мембраны

Ответы: 1Е., 2В., 3С., 4D., 5D., 6С., 7В., 8В., 9В., 10Е.


ТЕСТОВЫЕ ЗАДАНИЯ ДЛЯ САМОКОНТРОЛЯ УРОВНЯ знаний по программе «Крок»:


1. Для нарушений звуковосприятия на уровне среднего уха характерно:

A. Повышение порога восприятия звука при воздушном и костном проведении.

B. Повышение порога восприятия звука при костном проведении.

2. Для нарушений звуковосприятия на уровне внутреннего уха характерно:

A. Повышение порога восприятия звука при костном проведении.

B. Повышение порога восприятия звука при воздушном и костном проведении.

C. Повышение порога восприятия звука при воздушном проведении.

D. Нарушение восприятия высокочастотного звука.

E. Нарушение восприятия низкочастотного звука.

3. Нарушения функций каких рецепторных зон способствует утрате статических рефлексов, в реализации которых принимает участие вестибулярная система?

A. Макулярные рецепторы.

B. Рецепторы полукружных каналов.

C. Рецепторы полукружных каналов и макулярных органов.

D. Проприорецепторы шеи.

E. Проприорецепторы шеи и макулярных органов.

4. У больного обнаружился выраженный дефект барабанной перепонки обоих ушей. Какие нарушения слухового анализатора отмечаются при этом?

A. Снижение остроты слуха.

B. Снижение восприятия звуков высокой частоты.

C. Снижение восприятия звуков низкой частоты.

D. Снижение порога болевых ощущений при высокой интенсивности звукового сигнала.

E. Повышение порога болевых ощущений при высокой интенсивности звукового сигнала.

5. Резкое одностороннее повышение давления эндолимфы в перепончатой части лабиринта и полукружных каналов способствует

A. Нистагму, быстрый компонент которого направлен в здоровую сторону.

B. Нистагму, быстрый компонент которого направлен в сторону повышения давления.

C. Нистагму, медленный компонент которого направлен в здоровую сторону.

D. Нистагму, медленный компонент которого направлен в сторону повышения давления.

E. Вертикальному нистагму.

6. Внезапный звуковой сигнал не вызвал у больного ориентировочную реакцию. В каком месте имеются нарушения?

A. На уровне образований мозжечка.

B. На уровне системы проведения проприоцептивной информации.

C. На уровне вестибулярных ядер продолговатого мозга.

D. На уровне таламуса.

E. На уровне четверохолмия среднего мозга.

7. Возбуждение рецепторов полукружных каналов наблюдается…

A. при угловых ускорениях в начале движения и в момент его окончания

B. при угловых ускорениях постоянно

C. при угловых ускорениях только в начале движения

D. при линейных ускорениях постоянно

E. при линейных ускорениях в в конце движения

8. Чем заполнен средний канал улитки?

A. перилимфой, близкой по составу со спинномозговой жидкостью

B. эндолимфой, близкой по составу с внутриклеточной жидкостью

C. перилимфой, близкой по составу с внеклеточной жидкостью

D. эндолимфой, близкой по составу с внеклеточной жидкостью

E. перелимфой, близкой по составу к с внутриклеточной жидкостью.

9. Какая из теорий восприятия звуков считается ведущей в настоящее время?

A. клеточная теория Вирхова

B. телефонная теория Резерфорда

C. резонаторная теория Гельмгольца

D. теория "бегущей волны" Бекеши

E. резонансная теория Гельмгольца

10. Кортиев орган расположен на…

A. рейснеровой мембране

B. мембране круглого окна

C. мембране овального окна

D. добавочной мембране

E. основной мембране

Ответы 1-С., 2-B., 3-A., 4-A., 5-E., 6-E., 7-A., 8-B., 9-D., 10-Е.


Ситуационные задачи:

1. Объясните, может ли человек слышать звуки с частотой 40000 Гц? Ответ: Человек различает как звук частоты от 16 до 20000 Гц.

2. У больного повреждены полукружные каналы внутреннего умн Может ли он дать отчет о положении головы в пространстве? Может, так как рецепторы полукружных каналов внут­реннего уха воспринимают изменение скорости движения тела. Положение головы в пространстве воспринимается рецепторами, рисположенными в мешочках преддверия.

3. Объясните, где легче определить направление источника звука, в воздухе или в воде? Почему? Ответ: Бинауральная система слуха анализирует разницу между временем прихода звука в левое и правое ухо и человек поворачивает голову в сторону источника звука до тех пор, пока мозг перестанет улавливать данную разницу. В этом случае мы будем смотреть прямо на источник звука. Вода - более плотная среда, в ней звук распространяется быстрее, чем в воздухе. Поэтому разница во времени между приходом звука в левое и правое ухо будет меньше, чем в воздухе. Это затруднит определение источника звука в водной бреде.

4. Объясните, в каком случае у человека увеличение скорости пульсовой волны может сочетаться со снижением верхнего порога слышимых частот, например до 8000Гц при отсутстивии каких-либо специфических заболеваний органа слуха? Ответ: У взрослого человека верхний порог слуховых частот составляет 20000 Гц. Значит у данного человека порог снижен. Поскольку заболевания слуховой системы отсутствуют, остается предположить, что дело в возрасте – старые люди обычно перестают слышать очень высокие звуки. В то же время в старости, как правило, возникают атеросклеротические изменения в стенках сосудов. Стенки становятся более жесткими, а это приводит к увеличению скорости пульсовой волны. Т.о. данное явление может наблюдаться у стариков при наличии склеротических явлений в стенках сосудов.

5. И овальное, и круглое окно в костной капсуле улитки затянуты эластичной мембраной. Если бы эта мембрана стала жесткой, восприятие звуков резко нарушилось бы. Объясните, почему? Ответ: Овальное окно передает колебания слуховых косточек перилимфе. Круглое окно обеспечивает возможность смещения перилимфы под влиянием колебаний мембраны овального окна, так как мембрана круглого окна также способна выпячиваться. Если бы обе эти мембраны стали жесткими, то перилимфа не могла бы смещаться, так как жидкость несжимаема. Таким образом в обоих случаях не могло бы в конечном счете происходить раздражение волосковых клеток кортиевого органа и не происходило бы восприятие звука.

6. Человек страдает тугоухостью. Если при нем играют на скрипке или заставляют звучать камертон, он этого не слышит. Объясните, что необходимо сделать, чтобы он услышал хотя бы один из этих звуков? Ответ: Восприятие звуков может происходить за счет воздушной проводимости и костной проводимости. При тугоухости ухудшается воздушная проводимость, например, за счет нарушения нормальной подвижности слуховых косточек. Однако, может сохраниться костная проводимость. Чтобы убедиться в этом, нужно поставить на какой-либо участок головы (лучше всего на сосцевидный отросток) звучащий предмет. Его колебания будут передаваться не только по воздуху, но и костям черепа, а от них рецепторному аппарату внутреннего уха и звук может быть услышан. Камертон можно приставить к голове его ножкой, а колеблющиеся струны скрипки – нельзя.

7. Объясните механизм «закладывания» ушей в самолете и предложите способ коррекции этого состояния. Ответ: При поднятии на высоту атмосферное давление снижается. Это приводит к тому, что стенки евстахиевых труб спадаются и давление на барабанную перепонку со стороны наружного уха не уравновешивается давлением со стороны среднего уха. Чтобы избавиться от связанных с этим неприятных ощущений, можно попытаться восстановить проходимость евстахиевых труб. Для этого повышают давление в полости рта, делая усиленные глотательные движения.

8. Резонансная теория слуха Гельмгольца предполагала, что восприятие различной высоты звука основано на том, что в зависимости от высоты звука возникают колебания различных участков основной мембраны – резонируют и возбуждаются волокна основной мембраны, имеющие различную длину. Однако И.П. Павлов предложил другую теорию - бегущей волны. Однако, известны опыты в лаборатории И. П. Павлова, в которых разрушение различных участков кортиева органа приводило к выпадению условных рефлексов на звуки соответственно низкой или высокой частоты. Не подтверждает ли это и справедливость резонаторной теории? Ответ: Действительно, подтверждает. Различные участки кортиевого органа обеспечивают восприятие звуков разной высоты. Но это еще ничего не говорит о механизме избирательного реагирования основной мембраны на звуковые волны разной частоты. В эндолимфе возникает бегущая волна. Ее параметры зависят от частоты действующего звука. В зависимости от характера этой бегущей волны происходит выбухание различных частей основной мембраны, что определяется ее упругими свойствами. В результате возбуждаются разные волосковые клетки и возникает ощущение высоты звука. Этот механизм называется пространственным кодированием.

9. При экспериментальном исследовании, если крыс приучают находить дорогу в лабиринте с многочисленными поворотами, то даже после выключения зрения, животные продолжают правильно проходить все повороты. Объясните, какую дополнительную операцию (одну из двух возможных) нужно сделать, чтобы крыса перестала ориентироваться в лабиринте? Ответ: При прохождении каждого поворота возникают угловые ускорения и, следовательно, включается вестибулярная сенсорная система. Отчасти здесь участвует и проприоцептивная сигнализация. Нейроны соответствующих отделов коры больших полушарий (КБП) запоминают последовательность поворотов и их местонахождение. Если дополнительно разрушить у животного вестибулярный аппарат или связанные с ним отделы КБП, то ориентация в лабиринте полностью исчезнет.

10. На экспертизу привезли человека, который утверждал, что не слышит звуков. Однако анализ ЭЭГ, зарегистрированной от височных областей коры мозга, помог опровергнуть ложное утверждение обследуемого. Объясните: 1) Какие изменения на ЭЭГ были отмечены при включении звукового сигнала? 2) Почему ЭЭГ была зарегистрирована от височнх областей мозга? 3) Волны какой частоты и амплитуды появились на ЭЭГ при включении звонка? Ответ: 1) Реакция десинхронизации. 2) Корковый отдел слухового анализатора локализуется в височной доле коры (поля 41, 42). 3) Бета–волны амплитудой до 25 мкВ, частотой 14-28 Гц.

11. При проведении экспериментального исследования лягушке произвели одностороннее разрушение полукружных каналов с левой стороны. После окончания постоперационного периода лягушку опустили в ванночку с водой. Объясните: 1) В какую сторону лягушка будет совершать плавательные движения? 2) В состав какого анализатора входят полукружные каналы? 3) Что является специфическим раздражителем для рецепторов полукружных каналов? 4) Как можно охарактеризвать основные функции вестибулярного аппарата? Ответ: 1) В сторону разрушенных полукружных каналов (влево). 2) В состав вестибулярного анализатора. 3) Угловое ускорение в начале и в конце вращательных движений. 4) Вестибулярная сенсорная система: информирует ЦНС о положении головы и ее движениях; обеспечивает поддержание позы вместе с двигательными ядрами ствола и мозжечка; обеспечивает ориентацию в пространстве (корковый отдел – постцентральная извилина).

12. Объясните, что произойдет со слуховыми условными рефлексами после удаления затылочной или височной долей мозга? Ответ: При удалении височных долей головного мозга условные рефлексы исчезают, при удалении затылочных - сохраняются.

Стандарты выполнения практических навыков по оториноларингологии "камертоннальные пробы"

Исследование слуха камертонами. Это исследование отличается простотой проведения и портативностью инструментария, что позволяет проводить его в любой обстановке

В настоящее время пользуются как камертонами, так и электрическими генераторами звуков - аудиометрами

Исследование слуха камертонами
Полное и точное исследование слуха восемью камертонами отнимает около часа. Оно может быть проведено только при специальных условиях. Это исследование проводится с целью дифференциальной диагностики тугоухости.

а). Исследование воздушной проводимости :

1. Возьмите набор ка­мертонов С128 (128 колебаний в секунду - низкочастотный) и С2048 (высокочастотный). Исследование начинают с С128. Ка­мертон С128 приводится в колебание ударом о тенар ладони. Камертон С2048 приводится в колебание щипком браншей двумя пальцами или ударом-щелчком ногтя.

2. Звучащий камертон, удерживая за ножку двумя пальцами, под­несите к наружному слуховому проходу обследуемого на расстоянии 1,0-1,5 см., секундомером измерьте время, втечение которого обследуемый слышит звучание этого камертона. Отсчет времени начинается с момента возбуждения камертона. После того, как пациент перестанет слышать, нужно камертон отдалить от уха и вновь сейчас же приблизить (не возбуждая его повторно). Как правило, после отдаления от уха пациент еще несколько секунд слышит звук. Оконча­тельное время отмечается по последнему ответу пациента – «не слышу».

б). Исследование костной проводимости :

1. Костная проводимость исследуется камертоном С128, так как вибрация камертонов с более высокой частотой прослушивается через воздух другим ухом. Звучащий камертон С128 поставьте перпендикулярно ножкой на площадку сосцевидного отростка.

2. Продолжительность восприя­тия измерьте также секундомером, ведя отсчет времени от момента удара камертона о тенор ладони до фразы пациента «не слышу».

18.3. Опыты с камертоном

1. Опыт Вебера (W)- оценка латерализации звука. Камертон С128 приставляют к темени пациента ножкой точно посередине головы и просят его сказать, каким ухом он лучше слышит звук. Бранши камертона должны совершать колебания во фронтальной плоскости, т.е. от правого уха к левому. В норме обследуемый слышит звук в середине головы или одинаково в обоих ушах. При одностороннем поражении звукопроводящего аппарата (серная пробка в слухо­вом проходе, воспаление среднего уха, перфорация барабанной перепонки и др.) на­блюдается латерализация звука в больное ухо; при двустороннем поражении - в сторону хуже слышащего уха. Нарушение звуковосприятия приводит к латерализа­ции звука в здоровое или лучше слышащее ухо.

2. Опыт Ринне (R)- сравнение длительности восприятия костной и воздушной про­водимости. Звучащий низкочастотный камертон устанавливается ножкой на сосцевидный отросток обследуемого уха. После прекращения восприятия звука по кости его подносят браншами к слуховому проходу. В норме человек дольше слышит камертон по воздуху (опыт Ринне положительный). При нарушении звуковосприятия пропорционально ухудшается костная и воздушная проводимость, поэтому опыт Ринне остается положительным. Если же страдает звукопроведение, то звук по кости воспринимается дольше, чем по воздуху (отрицательный опыт Ринне ). Можно сравнить данные восприятия воздушной и костной проводимости в секундах полученные вначале.

3. Опыт Швабаха (Sch)измерение длительности восприятия звука через кость. Звуча­щий камертон поставьте на сосцевидный отросток обследуемого и держите его до тех пор, пока последний перестанет слышать его. Затем исследователь (с нормальным слухом) ставит ка­мертон себе на сосцевидный отросток, если он продолжает слышать камертон, то у исследуемого опыт Швабаха укорочен, если так же не слышит, то опыт Швабаха у обследуемого нормален. Можно сравнить длительность восприятия у обследу­емого с паспортными данными камертона. Тоже проведите на другое ухо. Укорочение опыта Швабаха наблюдается при заболеваниях звуковоспринимающего аппарата, удлинение – при нарушении звукопроведения.

4. Опыт Федеричи (F)- сравнение длительности восприятия костнотканевой проводимости с сосцевидного отростка и проводимости с козелка. Проводится опыт аналогично опыту Ринне: после прекращения звучания камертона на сосцевидном отростке он ставится ножкой на козелок. В норме и при нарушении звуковосприятия опыт Федеричи положительный, т.е. звучание камертона с козелка воспринимается дольше, а при нарушении звукопрове­дения - отрицательный .

5. Опыт Бинга (Вi)- сравнение интенсивности восприятия костно-тканевой проводимости с сосцевидного отростка при открытом наружном слуховом проходе и закрытом путем прижатия козелка к ушной раковине. В норме, при хорошей подвижности цепи слуховых косточек, выключение воздушного звукопроведения (закрытый слуховой проход) удлиняет восприятие через кость. При нарушении звукопроведения костная проводимость остается одинаковой при открытом и закрытом слуховом проходе.

6. Опыт Желле (G)- определение подвижности подножной пластинки стремени в овальном окне – специальный опыт для диагностики отосклероза. Наружный слуховой проход плотно обтурируется оливой баллона Политцера, и с его помощью периодически увеличивается и уменьшается давление воздуха на барабанную перепонку, слуховые косточки, можно периодически открывать и закрывать слуховой проход, прижимая и отпуская козелок, т.е. закрывая и открывая слуховой проход несколько раз. Максимально звучащий низкочастотный камертон устанавливается на сосцевидный отток. При неподвижности стремени в овальном окне громкость звука от изменения давления в наружном слуховом проходе не меняется (опыт Желле отрицательный), в то время как в норме при повышении давления звук воспринимается более тихим (опыт Желле положительный).

Результаты исследования слуха шепотной и разговорной речью, а также камертонами вносят в слуховой паспорт :

Акуметрия

Более точные результаты дает исследование слуховой функции камертонами . Для практических целей достаточно иметь 2 камертона: один-в 128 колебаний в секунду, другой - в 1024-2048 колебаний в секунду. Для более точного анализа слуховой функции необходимо иметь в своем распоряжении набор камертонов и свисток Гальтона.

При помощи камертонов определяется, как и при помощи речи воздушная проводимость звука. Для этого перед ухом больного держат звучащий камертон и определяют количество секунд, в течение которых больной слышит этот звук. Острота слуха определяется дробью, где числителем служит число секунд слышимости больным, а знаменателем - продолжительность в секундах нормальной слышимости для данного камертона.

Исследование костной проводимости , имеющее большое значение для дифференциальной диагностики заболевания слухового аппарата, производится при помощи камертона в 128 колебаний в секунду. Если поставить на темя больного ножку звучащего камертона, то при здоровых ушах звук ощущается в голове (опыт Вебера). В случае нарушения звукопроводящего аппарата одной стороны (при всех заболеваниях среднего уха) звук камертона лучше слышен в больном ухе (латерализация звука).

Это одностороннее усиление звука через кость объясняется затруднением истечения звуковых волн из лабиринта вследствие наличия препятствия в среднем ухе. Такой результат опыта Вебера наблюдается лишь при здоровом внутреннем ухе. В противном случае (поражение лабиринта и слухового нерва) звук камертона, стоящего на темени, будет лучше слышен в здоровом ухе, а при двухстороннем поражении - в менее пораженном.

Таким образом, опыт Вебера во многих случаях даст возможность отличить заболевание среднего уха от внутреннего, а иногда и отметить начало перехода процесса среднего уха на лабиринт. За последнее говорит неожиданный перенос латерализации звука с больной стороны на здоровую.

Очень важные указания дает сравнительная оценка продолжительности восприятия звука через кость и воздух, что составляет сущность опыта Ринне. Это исследование производится следующим образом. Ножка звучащего камертона (128 колебаний в секунду) ставится на сосцевидный отросток исследуемого уха. Когда больной перестает слышать звук камертона, его отнимают от кости и приближают к слуховому проходу.

Нормальное ухо воспринимает еще некоторое время звучание камертона через воздух, т. е. воздушная проводимость больше костной (по ожительный Ринне). Если больной не слышит звука через слуховой проход, значит - костная проводимость больше воздушной (отрицательный Ринне).

Это исследование имеет большое значение для дифференциальной диагностики заболеваний среднего и внутреннего уха. Положительный опыт Ринне, при наличии понижения слуха, говорит о локализации процесса во внутреннем ухе. Если же костная проводимость больше воздушной (отрицательный Ринне), то это служит доказательством поражения звукопроводящего аппарата. При комбинированном или двухстороннем заболевании диагностика локализации процесса иногда встречает очень большие трудности, и в таких случаях значение опытов Вебера и Ринне значительно уменьшается.

Сегодня мы разбираемся, как расшифровать аудиограмму. В этом нам помогает Светлана Леонидовна Коваленко — врач высшей квалификационной категории, главный детский сурдолог-оториноларинголог Краснодара, кандидат медицинских наук .

Краткое изложение

Статья получилось большой и подробной — чтобы понять, как расшифровать аудиограмму, надо сначала познакомиться с основными терминами аудиометрии и разобрать примеры. Если у вас нет времени долго читать и разбираться в деталях, в карточке ниже — краткое изложение статьи.

Аудиограмма — график слуховых ощущений пациента. Она помогает диагностировать нарушения слуха. На аудиограмме две оси: горизонтальная — частота (количество звуковых колебаний в секунду, выражается в герцах) и вертикальная — интенсивность звука (относительная величина, выражается в децибелах). На аудиограмме отмечается костная проводимость (звук, который в виде вибраций доходит до внутреннего уха через кости черепа) и воздушная проводимость (звук, который достигает внутреннего уха обычным путём — через наружное и среднее ухо).

При аудиометрии пациенту подают сигнал разной частоты и интенсивности и отмечают точками величину минимального звука, который слышат пациент. Каждая точка показывает минимальную интенсивность звука, при которой пациент слышит на конкретной частоте. Соединив точки, получаем график, а точнее, два — один для костного звукопроведения, другой — для воздушного.

Норма слуха — когда графики лежат в диапазоне от 0 до 25 дБ. Разница между графиком костного и воздушного звукопроведения называется костно-воздушным интервалом. Если график костного звукопроведения в норме, а график воздушного лежит ниже нормы (присутстувет костно-воздушный интервал), это показатель кондуктивной тугоухости. Если график костного звукопроведения повторяет график воздушного, и оба лежат ниже нормального диапазона, это говорит о сенсоневральной тугоухости. Если чётко определяется костно-воздушный интервал, и при этом оба графика показывают нарушения, значит, тугоухость смешанная.

Основные понятия аудиометрии

Чтобы понять, как расшифровать аудиограмму, сначала остановимся на некоторых терминах и самой методике аудиометрии.

У звука две основные физические характеристики: интенсивность и частота.

Интенсивность звука определяется силой звукового давления, которое у человека весьма вариабельно. Поэтому для удобства принято пользоваться относительными величинами, такими как децибелы (дБ) — это десятичная шкала логарифмов.

Частоту тона оценивают количеством звуковых колебаний в секунду и выражают в герцах (Гц). Условно диапазон звуковых частот делят на низкие — ниже 500Гц, средние (речевые) 500−4000Гц и высокие — 4000Гц и выше.

Аудиометрия — это измерение остроты слуха. Эта методика субъективна и требует обратной связи с пациентом. Исследующий (тот, кто проводит исследование) при помощи аудиометра подаёт сигнал, а исследуемый (слух которого исследуют) даёт знать, слышит он этот звук или нет. Чаще всего для этого он нажимает на кнопку, реже — поднимает руку или кивает, а дети складывают игрушки в корзину.

Существуют различные виды аудиометрии: тональная пороговая, надпороговая и речевая. На практике наиболее часто применяется тональная пороговая аудиометрия, которая определяет минимальный порог слуха (самый тихий звук, который слышит человек, измеряемый в децибелах (дБ)) на различных частотах (как правило, в диапазоне 125Гц — 8000 Гц, реже до 12 500 и даже до 20 000 Гц). Эти данные отмечаются на специальном бланке.

Аудиограмма — график слуховых ощущений пациента. Эти ощущения могут зависеть как от самого человека, его общего состояния, артериального и внутричерепного давления, настроения и т. д. , так и от внешних факторов — атмосферных явлений, шума в помещении, отвлекающих моментов и т. д.

Как строится график аудиограммы

Для каждого уха раздельно измеряют воздушную проводимость (через наушники) и костную проводимость (через костный вибратор, который располагают позади уха).

Воздушная проводимость — это непосредственно слух пациента, а костная проводимость — слух человека, исключая звукопроводящую систему (наружное и среднее ухо), её ещё называют запасом улитки (внутреннего уха).

Костная проводимость обусловлена тем, что кости черепа улавливают звуковые вибрации, которые поступают ко внутреннему уху. Таким образом, если имеется препятствие в наружном и среднем ухе (любые патологические состояния), то звуковая волна достигает улитки благодаря костной проводимости.

Бланк аудиограммы

На бланке аудиограммы чаще всего правое и левое ухо изображены раздельно и подписаны (чаще всего правое ухо слева, а левое ухо справа), как на рисунках 2 и 3. Иногда оба уха отмечаются на одном бланке, их различают либо цветом (правое ухо всегда красным, а левое — синим), либо символами (правое кругом или квадратом (0---0---0), а левое — крестом (х---х---х)). Воздушную проводимость всегда отмечают сплошной линией, а костную — прерывистой.

По вертикали отмечают уровень слуха (интенсивность стимула) в децибелах (дБ) с шагом в 5 или 10 дБ, сверху вниз, начиная от −5 или −10, а заканчивая 100 дБ, реже 110 дБ, 120 дБ. По горизонтали отмечаются частоты, слева направо, начиная от 125 Гц, далее 250 Гц, 500Гц, 1000Гц (1кГц), 2000Гц (2кГц), 4000Гц (4кГц), 6000Гц (6кГц), 8000Гц (8кГц) и т. д. , могут быть некоторые вариации. На каждой частоте отмечается уровень слуха в децибелах, потом точки соединяют, получается график. Чем выше график, тем лучше слух.


Как расшифровать аудиограмму

При обследовании больного в первую очередь необходимо определить топику (уровень) поражения и степень слуховых нарушений. Правильно выполненная аудиометрия даёт ответ на оба этих вопроса.

Патология слуха может быть на уровне проведения звуковой волны (за этот механизм отвечает наружное и среднее ухо), такую тугоухость называют проводниковой или кондуктивной; на уровне внутреннего уха (рецепторный аппарат улитки), данная тугоухость является сенсоневральной (нейросенсорной), иногда бывает сочетанное поражение, такую тугоухость называют смешанной. Крайне редко встречаются нарушения на уровне слуховых проводящих путей и коры головного мозга, тогда говорят о ретрокохлеарной тугоухости.

Аудиограммы (графики) могут быть восходящими (чаще всего при кондуктивной тугоухости), нисходящими (чаще при сенсоневральной тугоухости), горизонтальными (плоскими), а также иной конфигурации. Пространство между графиком костной проводимости и графиком воздушной — это костно-воздушный интервал. По нему определяют, с каким видом тугоухости мы имеем дело: нейросенсорной, кондуктивной или смешанной.

Если график аудиограммы лежит в диапазоне от 0 до 25 дБ по всем исследуемым частотам, то считается, что у человека нормальный слух. Если график аудиограммы спускается ниже, то это патология. Тяжесть патологии определяется степенью тугоухости. Существуют различные расчёты степени тугоухости. Однако наиболее широкое распространение получила международная классификация тугоухости, по которой рассчитывается среднеарифметическая потеря слуха на 4 основных частотах (наиболее важных для восприятия речи): 500 Гц, 1000 Гц, 2000 Гц и 4000 Гц.

1 степень тугоухости — нарушение в пределах 26−40 дБ,
2 степень — нарушение в диапазоне 41−55 дБ,
3 степень — нарушение 56−70 дБ,
4 степень — 71−90 дБ и свыше 91 дБ — зона глухоты.

1 степень определяется как лёгкая, 2 — среднетяжёлая, 3 и 4 — тяжёлая, а глухота — крайне тяжёлая.

Если костное звукопроведение в норме (0−25дБ), а воздушное проведение нарушено, это показатель кондуктивной тугоухости . В случаях, когда нарушено и костное, и воздушное звукопроведение, но есть костно-воздушный интервал, у пациента смешанный тип тугоухости (нарушения и в среднем и во внутреннем ухе). Если костное звукопроведение повторяет воздушное, то это сенсоневральная тугоухость . Однако при определении костной звукопроводимости необходимо помнить, что низкие частоты (125Гц, 250Гц) дают эффект вибрации и исследуемый может принимать это ощущение за слуховое. Поэтому нужно критически относиться к костно-воздушному интервалу на данных частотах, особенно при тяжёлых степенях тугоухости (3−4 степени и глухоте).

Кондуктивная тугоухость редко бывает тяжелой степени, чаще 1−2 степень тугоухости. Исключения составляют хронические воспалительные заболевания среднего уха, после хирургических вмешательствах на среднем ухе и т. д. , врожденные аномалии развития наружного и среднего уха (микроотии, атрезии наружных слуховых проходов и т. д.), а также при отосклерозе.

Рисунок 1 — пример нормальной аудиограммы: воздушная и костная проводимость в пределах 25 дБ во всём диапазоне исследуемых частот с обеих сторон .

На рисунках 2 и 3 представлены типичные примеры кондуктивной тугоухости: костное звукопроведение в пределах нормы (0−25дБ), а воздушное нарушено, имеется костно-воздушный интервал.

Рис. 2. Аудиограмма пациента с двусторонней кондуктивной тугоухостью .

Чтобы рассчитать степень тугоухости, складываем 4 величины — интенсивность звука на 500, 1000, 2000 и 4000 Гц и делим на 4, чтобы получить среднее арифметическое. Получаем справа: на 500Гц — 40дБ, 1000Гц — 40 дБ, 2000Гц — 40 дБ, 4000Гц — 45дБ, в сумме — 165 дБ. Делим на 4, равно 41,25 дБ. Согласно международной классификации, это 2 степень тугоухости. Определяем тугоухость слева: 500Гц — 40дБ, 1000Гц —— 40 дБ, 2000Гц — 40 дБ, 4000Гц — 30дБ = 150, разделив на 4, получаем 37,5 дБ, что соответствует 1 степени тугоухости. По данной аудиограмме можно сделать следующее заключение: двусторонняя кондуктивная тугоухость справа 2 степени, слева 1 степени.

Рис. 3. Аудиограмма пациента с двусторонней кондуктивной тугоухостью .

Аналогичную операцию выполняем для рисунка 3. Степень тугоухости справа: 40+40+30+20=130; 130:4=32,5, т. е. 1 степень тугоухости. Слева соответственно: 45+45+40+20=150; 150:4=37,5, что также является 1 степенью. Таким образом, можно сделать следующее заключение: двусторонняя кондуктивная тугоухость 1 степени.

Примерами сенсоневральной тугоухости являются рисунки 4 и 5. На них видно, что костная проводимость повторяет воздушную. При этом на рисунке 4 слух на правом ухе в норме (в пределах 25 дБ), а слева имеется сенсоневральная тугоухость, с преимущественным поражением высоких частот.

Рис. 4. Аудиограмма пациента с сенсоневральной тугоухостью слева, правое ухо в норме .

Степень тугоухости рассчитываем для левого уха: 20+30+40+55=145; 145:4=36,25, что соответствует 1 степени тугоухости. Заключение: левосторонняя сенсоневральная тугоухость 1 степени.

Рис. 5. Аудиограмма пациента с двусторонней сенсоневральной тугоухостью .

Для данной аудиограммы показательным является отсутствие костного проведения слева. Это объясняется ограниченностью приборов (максимальная интенсивность костного вибратора 45−70 дБ). Рассчитываем степень тугоухости: справа: 20+25+40+50=135; 135:4=33,75, что соответствует 1 степени тугоухости; слева — 90+90+95+100=375; 375:4=93,75, что соответствует глухоте. Заключение: двусторонняя сенсоневральная тугоухость справа 1 степени, слева глухота.

Аудиограмма при смешанной тугоухости отображена на рисунке 6.

Рисунок 6. Имеются нарушения как воздушного, так и костного звукопроведения. Чётко определяется костно-воздушный интервал .

Степень тугоухости рассчитываем согласно международной классификации, которая составляет для правого уха среднеарифметическое значение 31,25дБ, а для левого — 36,25дБ, что соответствует 1 степени тугоухости. Заключение: двусторонняя тугоухость 1 степени по смешанному типу.

Сделали аудиограмму. Что потом?

В заключении следует отметить, что аудиометрия не является единственным методом исследования слуха. Как правило, для установления окончательного диагноза необходимо комплексное аудиологическое исследование, которое помимо аудиометрии включает акустическую импедансометрию, отоакустическую эмиссию, слуховые вызванные потенциалы, исследование слуха при помощи шёпотной и разговорной речи. Также в ряде случаев аудиологическое обследование необходимо дополнять другими методами исследования, а также привлечением специалистов смежных специальностей.

После диагностики слуховых нарушений необходимо решать вопросы лечения, профилактики и реабилитации больных с тугоухостью.

Наиболее перспективно лечение при кондуктивной тугоухости. Выбор направления лечения: медикаментозного, физиотерапевтического или хирургического определяется лечащим врачом. В случае сенсоневральной тугоухости улучшение или восстановление слуха возможно только при острой её форме (при продолжительности тугоухости не более 1 месяца).

В случаях стойкой необратимой потери слуха врач определяет методы реабилитации: слухопротезирование или кохлеарную имплантацию. Такие пациенты должны не реже 2 раз в год наблюдаться у сурдолога, а с целью профилактики дальнейшего прогрессирования тугоухости получать курсы медикаментозного лечения.

Воздушные звуковые волны от источника звука, распространяясь, по наружному слуховому проходу достигают барабанной перепонки и вызывают ее колебания, которые через систему слуховых косточек передаются на овальное окно. Смещение стремени в полость лестницы преддверия вызывает колебания перилимфы, которые через геликотрему передаются перилимфе барабанной лестницы, и происходит смещение мембраны круглого окна в сторону барабанной полости среднего уха (рис. 56).

Рис. 56. Схема распространения звуковых колебаний в улитке:

1 - наружное ухо, 2 - среднее ухо, 3 - улитка

Упругость мембраны круглого окна позволяет перилимфе смещаться между овальным и круглым окнами при воздействии звуковых волн. Колебания перилимфы верхнего канала улитки через тонкую вестибулярную мембрану передаются на эндолимфу улиткового протока. В результате перемещений перилимфы и эндолимфы приводится в движение основная мембрана с расположенным на ней кортиевым органом, что вызывает колебание волосковых клеток . Волоски этих клеток, касаясь покровной мембраны,деформируются , что является причиной возникновения возбуждения (потенциала действия) в рецепторных слуховых клетках. Таким образом, во внутреннем ухе происходит преобразование физической энергии звуковых колебаний в возбуждение слуховых клеток, возникающие нервные импульсы по волокнам слухового нерва и проводящим нервным путям поступают в подкорковые отделы, а затем – в слуховую сенсорную зону коры головного мозга. Экспериментально установлено, что в улитке при звуковом раздражении возникают переменные электрические токи, которые по своему ритму и величине полностью повторяют частоту и силу звуковых колебаний. Улитка как бы играет роль микрофона, преобразующего механические колебания в электрические потенциалы.


4. Слуховые косточки. Строение и участие в формировании слуха.

СЛУХОВЫЕ КОСТОЧКИ - комплекс из мелких косточек в среднем ухе. Находятся в барабанной полости три маленькие слуховые косточки - молоточек, наковальня и стремя. Колебания барабанной перепонки (в барабанной полости) улавливаются молоточком, усиливаютсядвижениями наковальни и передаются на стремечко,

которое соединено с овальным окном в УЛИТКЕ внутреннего уха.

1.Молоточек снабжен округлой головкой, которая при посредстве шейки, соединяется с рукояткой.

2. Наковальня, имеет тело, и два расходящихся отростка, из которых один более короткий, направлен назад и упирается в ямку, а другой - длинный отросток, идет параллельно рукоятке молоточка медиально и кзади от нее и на своем конце имеет небольшое овальное утолщение, сочленяющееся со стременем.

3. Стремя, по своей форме оправдывает свое название и состоит из маленькой головки, несущей сочленовную поверхность для наковальни и двух ножек: передней, более прямой, и задней, более изогнутой, которые соединяются с овальной пластинкой, вставленной в окно преддверия. В местах сочленений слуховых косточек между собой образуются два настоящих сустава с ограниченной подвижностью. Пластинка стремени соединяется с краями при посредстве соединительной ткани.

Слуховые косточки укреплены, кроме того, еще несколькими отдельными связками. В целом все три слуховые косточки представляют более или менее подвижную цепь, идущую поперек барабанной полости от барабанной перепонки к лабиринту. Подвижность косточек постепенно уменьшается в направлении от молоточка к стремечку, что предохраняет спиральный орган, расположенный во внутреннем ухе, от чрезмерных сотрясений и резких звуков.

Цепь косточек выполняет две функции:

1) костную проводимость звука

2) механическую передачу звуковых колебаний к овальному окну преддверия.


5. Строение внутреннего уха. Звуковой и вестибулярный анализатор. Анатомия, физиология. Ототопика.

Внутреннее ухо, или лабиринт, располагается в толще пирамиды височной кости между барабанной полостью и внутренним слуховым проходом, через который выходит из лабиринта.

Костный лабиринт состоит из: вестибулярный лабиринта, костного лабиринта, перепончатого лабиринта, улитки; преддверия; полукружных каналов.

У современного человека улитка находится впереди, а полукружные каналы сзади, между ними расположена полость неправильной формы - преддверие. Внутри костного лабиринта находится перепончатый лабиринт, который имеет точно такие же три части, но меньших размеров, а между стенками обоих лабиринтов находится небольшая щель, заполненная прозрачной жидкостью - перилимфой.

Улитка. Каждая часть внутреннего уха выполняет определенную функцию. Улитка является органом слуха: звуковые колебания, которые из наружного слухового прохода через среднее ухо попадают во внутренний слуховой проход, в виде вибрации передаются жидкости, заполняющей улитку. Внутри улитки находится основная мембрана (нижняя перепончатая стенка), на которой расположен Кортиев орган - скопление разнообразных опорных клеток и особых сенсорно-эпителиальных волосковых клеток, которые через колебания перилимфы воспринимают слуховые раздражения в диапазоне 16-20000 колебаний в секунду, преобразуют их и передают на нервные окончания VIII пары черепных нервов - преддверно-улиткового нерва; дальше нервный импульс поступает в корковый слуховой центр головного мозга.

Преддверие и полукружные каналы - органы чувства равновесия и положения тела в пространстве. Расположены в трёх взаимно перпендикулярных плоскостях и заполнены полупрозрачной студенистой жидкостью; внутри каналов находятся чувствительные волоски, погруженные в жидкость, и при малейшем перемещении тела или головы в пространстве жидкость в этих каналах смещается, надавливая на волоски и порождая импульсы в окончаниях вестибулярного нерва - в мозг мгновенно поступает информация об изменении положения тела. Работа вестибулярного аппарата позволяет человеку точно ориентироваться в пространстве при самых сложных движениях - например, прыгнув в воду с трамплина и при этом несколько раз перевернувшись в воздухе, в воде ныряльщик мгновенно узнаёт, где находится верх, а где - низ.

Различают костный и перепончатый лабиринты, причем последний лежит внутри первого. Костный лабиринт, представляет ряд мелких сообщающихся между собой полостей, стенки которых состоят из компактной кости. В нем различают три отдела: преддверие, полукружные каналы и улитку; улитка лежит спереди, медиально и несколько книзу от преддверия, а полукружные каналы - кзади, латерально и кверху от него.

Преддверие , образующее среднюю часть лабиринта, - небольшая, приблизительно овальной формы полость, сообщающаяся сзади пятью отверстиями с полукружными каналами, а спереди - более широким отверстием с каналом улитки. На латеральной стенке преддверия, обращенной к барабанной полости, имеется отверстие, занятое пластинкой стремени. Другое отверстие, затянутое находится у начала улитки. Посредством гребешка, проходящего на внутренней поверхности медиальной стенкипреддверия, полость последнего делится на два углубления, из которых заднее, соединяющееся с полукружными каналами. Под задним концом гребешка на нижней стенке преддверия находится небольшая ямка, соответствующая началу перепончатого хода улитки.

Костные полукружные каналы , - три дугообразных костных хода, располагающихся в трех взаимно перпендикулярных плоскостях. Передний полукружный канал, расположен вертикально под прямым углом к оси пирамиды височной кости, задний полукружный канал, также вертикальный, располагается почти параллельно задней поверхности пирамиды, а латеральный канал, лежит горизонтально, вдаваясь в сторону барабанной полости. У каждого канала две ножки, которые, однако, открываются в преддверии только пятью отверстиями, так как соседние концы переднего и заднего каналов соединяются в одну общую ножку. Одна из ножек каждого канала перед своим впадением в преддверие образует расширение, называемое ампулой.

Перепончатый лабиринт, лежит внутри костного и повторяет более или менее точно его очертания. Он содержит в себе периферические отделы анализаторов слуха и гравитации. Стенкиего образованы тонкой полупрозрачной соединительнотканной перепонкой. Внутри перепончатый лабиринт наполнен прозрачной жидкостью - эндолимфой.Т.К.перепончатый лабиринт несколько меньше костного, то между стенками того и другого остается промежуток - перилимфатическое пространство, наполненное перилимфой. В преддверии костного лабиринта заложены две части перепончатого лабиринта: эллиптический мешочек и сферический мешочек. Перепончатый лабиринт в области полукружных протоков подвешен на плотной стенке костного лабиринта сложной системой нитей и мембран. Этим предотвращается смещение перепончатого лабиринта при значительных движениях. Ни перилимфатическое, ни эндолимфатическое пространства «не закрыты намертво» от окружающей среды. Перилимфатическое пространство имеет связь со средним ухом через окна улитки и преддверия, которые эластичны и податливы. Эндолимфатическое пространство связано через эндолимфатический проток с эндолимфатическим мешочком, лежащим в полости черепа; он является эластичным резервуаром, который сообщается с внутренним пространством полукружных протоков и остальным лабиринтом.