2158 0

Лечение мигрени

Лечение мигрени сводится, прежде всего, к исключению провоцирующих факторов (курение, прием алкоголя, недосыпание, стресс, переутомление, употребление в пищу некоторых продуктов, сосудорасширяющих средств - нитроглицерина, дипиридамола и др.), регулярным физическим упражнениям. Во время приступа состояние облегчает помещение больного в тихую темную комнату.

Фармакотерапия мигрени включает абортивную терапию (направленную на купирование приступа-анальгетики, экстракраниальные вазоконстрикторы, эрготамин, триптаны, кофеин, золмитриптан, суматриптан) и превентивную (направленную на предупреждение приступа - амитриптилином, пропранолом, блокаторами кальциевых каналов).

У большинства пациентов с мигренью все лечение сводится только к купированию приступов. Лишь при частых, тяжелых приступах и/или присоединении психопатологических синдромов (тревога, депрессия и др.) показано профилактическое (превентивное) лечение. Основная цель профилактического лечения - снижение частоты приступов и уменьшение их интенсивности. Полностью излечиться от мигрени невозможно в силу наследственной природы заболевания. Профилактическое лечение не назначают при беременности или планируемой беременности.

Лечение приступа мигрени начинают как можно раньше: при классической мигрени (мигрень с аурой) - при появлении предвестников приступа, при простой мигрени - с началом головной боли. Иногда приступ ограничивается только аурой, поэтому некоторые больные начинают принимать лекарство лишь при появлении боли.

Основные требования, предъявляемые к антимигренозным препаратам, - эффективность, безопасность, быстрота действия. При выборе конкретной лекарственной формы для купирования мигренозной атаки целесообразно начинать с более простых форм (нестероидные противовоспалительные препараты) и только при отсутствии эффекта переходить к более целенаправленному лечению (эрготаминовые препараты, серотониновые агонисты) - см. табл. 18.

Пациенты, не прибегающие к врачебной помощи, в большинстве случаев используют простые или комбинированные ненаркотические анальгетики. Эта группа препаратов может также помочь пациентам с эпизодическими ГБ. Но нужно помнить о недопустимости злоупотребления анальгетиками, поскольку это может способствовать переходу ГБ в хронические формы.

Среди группы НПВП предпочтение отдается ингибиторам циклооксигеназы преимущественно в ЦНС или в ЦНС и на периферии: мелоксикам, нимесулид, парацетамол, ацетилсалициловая кислота, ибупрофен. При приступах, сопровождающихся тошнотой, целесообразно использовать ацетилсалициловую кислоту в виде шипучего раствора, поскольку данная форма лучше купирует тошноту. Фундаментальный механизм действия НПВП связан с ингибицией синтеза ЦОГ - ключевого фермента метаболизма арахидоновой кислоты, предшественника простагландинов (ПГ).

Некоторые НПВП подавляют синтез ПГ очень сильно, другие слабо. При этом прямой связи между степенью подавления синтеза ПГ, с одной стороны, и анальгетической активностью - с другой, не выявлено.

Таблица 18. Медикаменты для абортивной терапии мигрени

Комбинированные препараты

Комбинированные препараты - каффетин, цитрамон, спазмалгин, спазмовералгин-нео, солпадеин и другие - имеют более высокий анальгетический эффект за счет включения дополнительных компонентов. Как правило, в состав этих препаратов входит кофеин, оказывающий тонизирующее влияние на сосуды головного мозга, что объясняет его благотворное влияние при мигрени. Кроме того, кофеин усиливает венопрессорный эффект, тормозит активность простагландина и гистамина. Необходимо отметить, что для купирования приступов мигрени эффективно именно сочетание парацетамола с кофеином, чистый парацетамол такого выраженного терапевтического эффекта не оказывает.

Кодеин оказывает анальгезирующее и седативное действие, а также потенцирует действие парацетамола. Например, препарат каффетин содержит: пропифеназон - 210 мг, парацетамол - 250 мг, кофеин - 50 мг, кодеина фосфат - 10 мг. В зависимости от интенсивности головной боли принимается одна или две таблетки, при отсутствии эффекта - через 30 минут принимается повторная доза. Максимальная суточная доза - 6 таблеток каффетина.

Поскольку приступ мигрени обычно прекращается при засыпании, отчасти могут помочь снотворные средства, например бензодиазепиновые препараты или фенобарбитал, который входит в состав многих комбинированных препаратов, содержащих НПВП (седалгин, пенталгин, спазмовералгин-нео). Лекарство лучше принимать в первые минуты или часы от начала мигренозной атаки, желательно не позднее чем через 2-4 часа.

При частом использовании анальгетиков необходима особая осторожность, поскольку имеется опасность развития лекарственной ГБ. Считается, что у больного, принимающего лекарства ежедневно или каждый второй день, через три месяца может сформироваться лекарственная головная боль.

Если пациенту не помогают НПВП ему можно рекомендовать эрготаминовые препараты. Эти препараты обладают мощным сосудосуживающим действием, предотвращают нейрогенное воспаление и, тем самым, купируют мигренозную атаку. Эрготамин назначают в качестве монотерапии или в сочетании с анальгетиками, противорвотными и седативными средствами, кофеином. Эффекгивность эрготаминовых препаратов выше при введении препарата, минуя ЖКТ (ректальные свечи, назальный спрей).

При повышенной чувствительности к препаратам спорыньи возможны побочные эффекты: загрудинная боль, боли и парестезии в конечностях, мышечные спазмы, рвота, диарея. Наименьшими побочными действиями обладает дигидергот-назальный спрей. Ишемическая болезнь сердца, гипертоническая болезнь и заболевания периферических схюудов являются противопоказанием для назначения эрготаминовых препаратов.

Начальная доза составляет 1 -2 мг эрготамина, при необходимости прием можно повторить через 30 минут, при этом общая доза не должна превышать 5 мг на один приступ или 10 мг в неделю.

Селективные агонисты серотонина

Селективные агонисты серотонина (имигран, нарамиг) обладают избирательным воздействием на серотониновые рецепторы мозговых сосудов, вызывая избирательное сужение сонных артерий, не оказывая при этом существенного влияния на церебральный кровоток. Считается, что расширение этих сосудов является основным механизмом развития мигрени у человека. Кроме того, эти препараты ингибируют активность тройничного нерва. Они высокоэффективны как в отношении собственно ГБ (купируют даже крайне тяжелые приступы мигрени), так и в отношении тошноты, рвоты.

Имигран применяют в таблетированной форме (таблетки по 50 мг и 100 мг) и инъекционной - по 6 мг подкожно, введение осуществляется с помощью аутоинъектора (суммарная доза не должна превышать 12 мг/сут). Побочные эффекты обычно выражены слабо: гиперемия лица, усталость, сонливость, слабость, неприятные ощущения в грудной клетке (у 3-5 % пациентов).

Агонисты серотонина также противопоказаны при ишемической болезни сердца, гипертонической болезни.

Иной механизм действия имеет препарат золмитриптан (золмигрен). Точкой приложения являются серотониновые рецепторы 5-НТ B/D. Препарат вызывает вазоконстрикцию, преимущественно, краниальных сосудов, блокирует высвобождение нейропептидов, в частности, вазоактивного интестинального пептида, являющегося основным эффекторным трансмиттером рефлекторного возбуждения, вызывающего вазодилатацию, которая лежит в основе патогенеза мигрени.

Он приостанавливает развитие приступа мигрени без прямого анальгетического действия. Наряду с купированием мигренозного приступа ослабляет тошноту, рвоту (особенно при левосторонних атаках), фото- и фонофобию. В дополнение к периферическому действию оказывает влияние на центры ствола головного мозга, связанные с мигренью, что обьясняет устойчивый повторный эффект при лечении серии приступов мигрени.

Высокоэффективен в комплексном лечении мигренозного статуса-серии из нескольких тяжелых, следующих один за другим приступов мигрени продолжительностью 2-5 суток. Устраняет мигрень, ассоциированную с менструацией.

Действие препарата развивается через 15-20 минут и достигает максимума через час после приема. Терпевтическая доза - 2,5 мг, если головная боль через 2 часа не снята полностью, возможен повторный прием 2,5 мг. Максимальная суточная доза 15 мг. Возможными побочными эффектами могут быть сонливость, ощущение тепла.

При исследовании представителя группы триптанов золмигрена были получены такие данные: в 20 % случаев - уменьшение частоты приступов мигрени, в 10 % случаев - уменьшение выраженности болевого синдрома и сопутствующих симптомов при той же частоте, в 50 % наблюдений - положительный эффект при вегетативных нарушениях, уменьшение выраженности астенического синдрома.

Профилактическое лечение мигрени (табл. 19). Превентивная терапия должна назначаться при следующих условиях (Silberstein):
1. Два или более приступов в месяц, вызывающих нетрудоспособность на 3 и бол ее дней.
2. Симптоматические медикаменты противопоказаны (неэффективны).
3. Требуется прием абортивных препаратов более двух раз в неделю.
4. Имеются особые обстоятельства, например, приступы случаются редко, но вызывают глубокие и выраженные расстройства.

Таблица 19. Превентивная терапия мигрени

Нестероидные противовоспалительные средства

Побочные эффекты: тошнота, рвота, изжога, боли в животе, нарушения стула, кожная сыпь

1. Ремесулид 100 мг 2 раза/сут. 2. Ревмоксикам 7,5-15 мг 1 раз/сут. 3. Нурофен 200-400 мг 2-3 раза/день. 4. Кетопрофен 75 мг 3 раза/день. 5. Напроксен 250-500 мг 2 раза/день

Антидепрессанты

1. Трициклические, с седативным действием

Противопоказаны при глаукоме, гиперплазии предстательной железы, нарушениях сердечной проводимости Амитриптилин 10-150 мг/сут

2. Ингибиторы обратного захвата серотонина
Побочные эффекты включают тошноту, диарею, бессонницу,
тревожность, половую дисфункцию

Флуоксетин (прозак) 10-80 мг/сут Циталопрам (цитагексал) 20-40 мг/сут

Бета-блокаторы

Побочные эффекты включают утомляемость, желудочно-кишечные нарушения, нарушения сна, артериальную гипотензию, похолодание конечностей, брадикардию, расстройства половой функции. Противопоказаны: больным астмой, хроническим обструктивным бронхитом, сердечной недостаточностью, атриовентрикулярной блокадой, инсулинзависимым диабетом, заболеваниями периферических сосудов Пропранолол 60-160 мг/сут Метопролол 100-200 мг/сут

Блокаторы кальциевых каналов

Верапамил 120-480 мг/сут (Может вызывать артериальную гипотензию, запоры, тошноту)


Курсовое лечение составляет 2-3 месяца. Курсы профилактического лечения следует проводить в сочетании с лекарственными средствами, непосредственно купирующими мигренозную атаку. Применяют в-адреноблокаторы, антидепрессанты, блокаторы кальциевых каналов, антисеротонинергические средства и антиконвульсанты.

Лечение, как правило, начинают с в-адреноблокаторов или антидепрессантов. Кроме медикаментозной терапии, целесообразно проводить рациональную психотерапию, иглореф-лексотерапию, релаксирующие методики для перикраниальных мышц.

Г.И. Лысенко, В.И. Ткаченко

(Serotoninum , син.: 5-окситриптамин, 5-OT, энтерамин ) - биологически активное вещество из группы индолилалкиламинов. В хим. отношении представляет собой 3-(бета-аминоэтил)-5-гидроксииндол; C 10 H 12 N 2 O:

С. широко распространен в природе. Он обнаружен во многих съедобных и несъедобных растениях, в т. ч. в ядовитых для человека, а также в ряде моллюсков и других беспозвоночных, в яде нек-рых насекомых, в тканях всех позвоночных. У млекопитающих и человека до 90% серотонина содержится в энтерохромаффинных клетках кишечника (0,9-8,6 мкг на 1 г свежей ткани), в связи с чем С. вначале был назван энтерамином. Много С. содержится также в тромбоцитах человека и теплокровных животных (2,4 ± 0,5 мкмоль на 1 г белка). Концентрация С. в цельной крови колеблется от 0,05 до 0,2 мг/л. В значительных количествах С. накапливается в тучных клетках кожи,в ткани легких, селезенки, почек, печена. Содержание С. в разных отделах ц. н. с. неодинаково. В наибольших количествах он обнаруживается в области гипоталамуса и среднего мозга. Относительно меньше С. содержится в таламусе, гиппокампе, мозжечке и сером веществе спинного мозга. Большие количества С. обнаружены в эпифизе (у человека до 22,8 мкг/г), причем максимальное содержание С. в этой железе отмечается в дневное время, минимальное - в ночное. Клетки, способные синтезировать и накапливать С., относят к АПУД-системе, или системе APUD (Amine precursor uptake and decarboxylation), т. e. к системе клеток, осуществляющих захват предшественников аминов и декар-боксилирование последних (см. АПУД-система).

Физико-химические свойства и методы определения. В виде свободного основания С. представляет собой белый порошок без запаха, мало растворимый в метиловом и 95% этиловом спирте. Нерастворим в абсолютном этиловом спирте, пиридине, хлороформе, этилацетоне, эфире, бензине; t°пл 209-212°; мол. вес (масса) 176,2. При pH 5,4 водный р-р серотонина имеет максимумы поглощения при 275 и 293 мкм. При pH 4,0 облучение р-ров серотонина ультрафиолетовым светом с длиной волны 295 мкм вызывает флуоресценцию с максимумом в области 550 мкм.

В связи с тем, что в форме свободного основания С. нестабилен, его выделяют в виде различных солей (напр., пикриновой, адипиновой, салициловой и др.) или в виде креатинин-сульфатного комплекса. Последний представляет собой кристаллический порошок светло-желтого цвета без запаха. Растворим в воде, бутаноле, гептане, ацетоне, ледяной уксусной к-те; t°пл 207 - 216°; мол. вес (масса) 405.

Для определения С. в тканях используют гл. обр. гистохимические методы исследования (см.), основанные на восстановлении аммиачного серебра, реакции с солями диазония или хромаффинной реакции, а также на возбуждении флюоресценции (см.): голубоватой в нефиксированных срезах или золотистожелтой в фиксированных формалином срезах. В биол. жидкостях С. определяют с помощью биологических, химических, хроматографических и флюориметрических методов (см. Флюориметрия , Хроматография). В клин, практике, напр, при диагностике карциноидного синдрома (см. Карциноид), уровень биосинтеза С. в организме оценивают обычно путем определения суммы 5-оксииндолов или содержания 5-оксииндолил уксусной к-ты в моче.

Обмен серотонина. В организме С. образуется из триптофана (см.), к-рый вначале гидроксилируется под влиянием триптофангидроксила-зы с образованием 5-окситриптофана (лимитирующий этап). Затем под влиянием декарбоксилазы 5-окситриптофан декарбоксилируется и превращается в С. В норме на образование С. расходуется ок. 1 - 3% поступающего в организм с пищей триптофана, при карциноиде - до 60%, что вызывает гиперсеро-тонинемию и признаки карциноидного синдрома. Синтезированный С. накапливается в клеточных депо в форме гранул (до 75%) и в свободной форме (до 25%).

Основной путь разрушения С.- окислительное дезаминирование под влиянием МАО (см. Моноаминоксидазы). Образующийся при этом 5-оксииндолилацетальдегид окисляется под влиянием альдегид-дегидрогеназы в 5-оксипндолилуксусную к-ту, к-рая выводится почками (в норме в среднем 5,0 ± 0,65 мг в сутки). Активность МАО наиболее высока в клетках, содержащих С. Небольшая часть С. подвергается N-ацетилированию. В эпифизе из С. сначала образуется N-ацетилсеротонин, превращающийся под влиянием оксииндол-0-метил-трансферазы гл. обр. в N-ацетил -5-метокси-триптамин - мелатонин (см.), к-рый рассматривается как гормон эпифиза. Кроме того, в эпифизе образуются и другие индолы, напр. 5-окситриптофол, 5-метокситрипто-фол. Активация N-ацетилирующе-го фермента опосредуется Р-адрено-рецепторами.

Этанол и резерпин могут усиливать протекающий с участием альдегидредуктазы процесс восстановления 5-оксииндолилацетальдегида в 5-окситриптофол. Однако восстановлению подвергается лишь ок. 1 % 5-оксииндолилацетальдегида. В нек-рых тканях С. в небольших количествах может метаболизиро-ваться путем N-метилирования с участием фермента индоламин-N-метилтрансферазы, обнаруженного в ткани легких и мозга человека, в результате чего в организме образуется буфотенин (N, N-диметилтриптамин), обладающий галлюционогенными свойствами. Кроме того, метаболиты С. из числа 5-оксииндолов могут подвергаться дальнейшим превращениям под влиянием дециклизирующего фермента и переаминированию (см. Трансаминирование), в результате чего образуются окрашенные продукты обмена С.

Одним из биол. механизмов поддержания в организме оптимального уровня физиологически активного С. является серотонинопексия (см.).

Взаимодействие серотонина с серотонинергическими рецепторами

Согласно современным представлениям С. оказывает влияние на функции различных органов и тканей путем взаимодействия со специфическими чувствительными к нему се-ротонинергическими рецепторами, к-рые, по-видимому, относятся к числу хеморецепторов мембранного типа. С помощью фармакол. методов исследования (применение антагонистов С.) выделено три типа клеточных чувствительных к С. рецепторов. Они получили обозначение D-, М-, и Т-серотонинергических рецепторов.

D-серотонинергические рецепторы, к-рые блокируются диэтиламидом лизергиновой кислоты (см.) и дибензилином, локализуются в основном в гладкой мускулатуре внутренних органов. Взаимодействие С. с этими рецепторами сопровождается сокращениями гладких мышц. М-серотонинергические рецепторы блокируются морфином и нек-рыми другими веществами. Они расположены гл. обр. в вегетативных ганглиях. Влияя на эти рецепторы, С. вызывает ганглиостимулирующий эффект. Т-серотонинергические рецепторы (блокируются типиндолом) обнаружены в сердечно-легочной рефлексогенной зоне. Действуя на них, С. вызывает коронарный и легочный хеморефлексы. В головном мозге обнаружены как D-, так М-серото-нинергические рецепторы. Предполагают, что в ц. н. с. имеются также и Т-серотонинергические рецепторы. Взаимодействие С. со специфическими рецепторами сопровождается активацией аденилатциклазы, что приводит к повышению внутриклеточного образования циклического аденозинмонофосфата. В нек-рых органах (напр., в гладких мышцах кишечника) под влиянием С. повышается образование циклического гуанозинмонофосфата.

Роль серотонина в деятельности нервной системы. В ц. н. с. серотонин играет роль медиатора синаптической передачи нервных импульсов (см. Медиаторы). Представление о медиаторной функции С. впервые высказали Броди и Шор (В. В. Brodie, P. A. Shore, 1957) на основании данных о наличии в мозге животных и человека специфической системы нейронов, синтезирующих С. Образующийся в этих нейронах С. продвигается по аксонам, достигает их термина лей и, высвобождаясь из последних, взаимодействует с серотонинергическими рецепторами других нейронов.

Основное количество синтезирующих С. нейронов находится в ядрах шва (nuclei raphe), расположенных в центральной части среднего и продолговатого мозга. Наличие в этих ядрах С., их локализацию и связи с другими отделами ц. н. с. установили шведские ученые Дальстрем и Фуксе (A. Dahlstrom, К. Fuxe, 1964) с помощью гистохимических методов исследования. Они предложили также классификацию ядер, содержащих серотонинсинтезирую-щие нейроны, согласно к-рой в мозге имеется 9 таких ядер. Указанные ядра обозначают латинской буквой В с соответствующими цифровыми индексами. Наиболее каудаль-но расположенные бледное (В1) и темное (В2) ядра находятся в продолговатом мозге. Они дают начало нисходящим к спинному мозгу аксонам, окончания к-рых распределяются сегментарно на всем его протяжении. Наиболее рострально расположенные дорсальное (В7) и медианное (В8) ядра шва находятся в среднем мозге и дают начало восходящим серотонинергическим путям, идущим к промежуточному и конечному мозгу. Нейроны остальных ядер имеют короткие аксоны, оканчивающиеся в структурах ствола мозга и мозжечка. Нейроны перечисленных ядер, отходящие от них аксоны и их терминали рассматриваются как специфическая серотонинергическая система мозга, анатомически связанная с другими его отделами.

Описаны два основных серотонин-ергических пути: мезолимбический (от ядра В8 к гиппокампу, гипоталамусу, перегородке и лимбической коре) и мезостриатный (от ядра В7 к стриатуму, таламусу, гипоталамусу и неокортексу). Терминали этих путей в указанных структурах распределены неравномерно. Так, в неокортексе наблюдается возрастание их плотности от нижних слоев к верхним и преобладание аксоден-дритических контактов над аксосома-тическими, что характерно для неспецифических структур мозга.

С помощью электронно-микроско-пического метода установлено, что эти контакты представлены варикозными расширениями безмиелиновых волокон, содержащими гранулы С. В связи с этим предполагают, что высвобождающийся из них С. может оказывать дистантное влияние на соседние образования. Такая организация контактов серотонинерги-ческих терминалей создает возможность модулирующего влияния серотонинергических структур мозга на активность корковых нейронов и характер их ответов на сигналы, поступающие по специфическим афферентным путям, идущим сгг органов чувств, чем и определяется участие этих структур в процессах восприятия, переработки и фиксации информации. Наличие указанных влияний подтверждено с помощью электрофизиол. методов исследования. Установлено, напр., что С. оказывает влияние на вызванные сенсорными стимулами потенциалы мозга. Особенности организации се-ротонинергической системы мозга и ее широкие связи с другими отделами ц. н. с. обусловливают участие этой системы в регуляции многих функций организма и сложных форм поведения. При этом большую роль играет взаимосвязь серотонинерги-ческой системы мозга с нейросекреторными ядрами гипоталамуса (см.), имеющими ближайшее анатомо-функ-циональное отношение к гипофизарно-адреналовой системе.

Серотонинергическая система мозга участвует в регуляции общего уровня активности ц. н. с., циклов сна - бодрствования, общей двигательной активности, разных форм эмоционального поведения, процессов памяти и обучения. При этом весьма важным является взаимодействие серотонинергической системы мозга с другими нейромедиа-торными его системами, в т. ч. с нора дренергической. Так, модулирующие влияния серотонинергической и норадренергической систем мозга, усиливающиеся при повышении эмоционального напряжения, имеют существенное значение для обработки информации. Выделение С. из терминалей усиливает циркуляцию возбуждения в нейронных системах, связанных с восприятием и фиксацией информации, и способствует переходу нейродинамической фазы фиксации следов памяти в фазу структурно-метаболических изменений, т. е. преобразованию кратковременной памяти в долговременную, Принимая участие в регуляции эмоционального состояния, С. играет большую роль в формировании эмоциональной памяти (см.).

Сопряженные влияния серотонинергической и норадренергической систем мозга в значительной мере определяют фазовую структуру сна (см.), т. е. соотношение медленноволновой и парадоксальной фаз сна. При этом серотонинергическая система имеет преимущественное отношение к организации медленноволновой фазы сна. У животных повышение в физиол. пределах активности серото-нинергических структур мозга сопровождается снижением общего уровня двигательной и ориентировочно-последовательной активности. У людей при приеме триптофана (основного источника С.) отмечается углубление сна и снижение двигательной активности.

Серотонинергическая система мозга участвует в регуляции сексуального поведения. Установлено, что повышение уровня С. в мозге сопровождается угнетением половой активности, а снижение содержания серотонина в ц. н. с. ведет к ее повышению. В эксперименте на животных установлено также, что серотонинергическая система мозга принимает участие в регуляции агрессивных состояний. Об этом свидетельствует тот факт, что снижение ее активности путем локальных разрушений среднемозговых ядер шва или с помощью фармакол. средств, угнетающих биосинтез С., сопровождается усилением агрессивности, а повышение уровня С. в мозге - ее ослаблением.

Серотонинергическая система мозга, очевидно, принимает участие в регуляции восприятия боли (см.), т.к. болевая чувствительность у животных понижается при увеличении содержания серотонина в ц. н. с., а при угнетении биосинтеза С. в мозге (напр., после введения п-хлорфе-нилаланина) повышается. От содержания серотонина в ц. н. с. зависит также степень выраженности болеутоляющего действия морфина и других наркотических анальгетиков. Установлено, напр., что на фоне повышения содержания С. в мозге анальгетический эффект морфина усиливается и удлиняется. При угнетении биосинтеза серотонина в ц. н. с. болеутоляющее действие морфина ослабляется. На основании этих фактов предполагают, что С. наряду с эндогенными опиоидными пептидами (см. Опиаты эндогенные) участвует в регуляции функций так наз. антиноцицептивной системы мозга, ослабляющей восприятие боли. Кроме того, имеются данные, свидетельствующие о влиянии серотонинергической системы мозга на возбудимость вазомоторных и терморегулирующих центров, а также рвотного центра. Влияние С. на функции нек-рых эндокринных желез обусловлено, по-видимому, не только его прямым действием, но и центральными механизмами, т. к. в под-бугорной области мозга обнаружены терминали серотонинергических нейронов, стимуляция к-рых сопровождается усилением выделения кортиколиберина (см. Гипоталамические нейрогормоны), пролактина (см.) и соматотропного гормона (см.).

Роль С. в регуляции функций периферической нервной системы мало изучена. Известно лишь, что С. усиливает передачу нервных импульсов в вегетативных ганглиях, а также повышает их реакции на электрическое раздражение преганглионарных волокон и введение ганглио-стимулирующих веществ, напр, ацетилхолина. Описанные эффекты обусловлены взаимодействием С. с М-серотонинергическими рецепторами, локализующимися в вегетативных ганглиях (см. Вегетативная нервная система).

Влияние серотонина на функции других систем организма

Согласно экспериментальным данным влияние С. на сердечно-сосудистую систему характеризуется гл. обр. изменениями сердечного ритма и АД. При этом в зависимости от условий эксперимента и вида животного изменения АД могут иметь фазный характер, т. к. возникающая после введения С. гипотензия может сменяться гипертензией, после к-рой иногда вновь развивается гипотензия. Это объясняется тем, что на тонус сосудов С. оказывает как прямое, так и рефлекторное влияние. Действуя на рефлексогенные зоны сердца и легких, С. вызывает бра-дикардию и гипотензию, а его прямое воздействие на гладкую мускулатуру приводит к спазму сосудов и повышению АД. Не исключено, что в механизмах действия С. на сердечно-сосудистую систему могут участвовать и нек-рые иные факторы, напр, выделение гистамина и катехоламинов под влиянием С., его ганглиостимулпрующее действие и др.

Влияние С. на жел.-киш. тракт проявляется в основном повышением секреции пепсина и муцина слизистой оболочкой желудка и усилением перистальтики кишечника.

С. имеет важное значение в механизмах гемостаза, т. к. высвобождение депонированного в тромбоцитах С. сопровождается их агрегацией и спазмом поврежденного сосуда. Кроме того, С. повышает тромбо-пластическуго активность, а также активность II, V и VI факторов свертывания крови. В связи с этим С. используют в клин, практике в качестве гемостатического средства.

На функции нек-рых эндокринных желез (коры надпочечников, щитовидной железы, яичников и др.) С. оказывает как прямое, так и опосредованное стимулирующее влияние, к-рое проявляется при введении С. в больших дозах.

Значение нарушений обмена серотонина в патологии. Участие С. в регуляции различных функций организма определяет необходимость изучения роли нарушений обмена С. в патологии, и в частности в психопатологии.

Предполагают, что нарушения обмена С. имеют значение в патогенезе депрессивных состояний, шизофрении и эпилепсии. Представления о значении дефицита серотонина в ц. н. с. в развитии депрессий подтверждается результатами постморталь-ного исследования (в мозге больных с депрессией обнаруживают пониженное содержание С.), а также данными об антидепрессивном эффекте предшественников С. (напр., триптофана) и лекарственных веществ, способствующих накоплению серотонина в ц. н. с. (напр., ингибиторов МАО и нек-рых других антидепрессантов). Вместе с тем известно, что блокаторы серотониновых рецепторов пизотифен и миансерин также оказывают леч. эффект при депрессиях. Однако данная гипотеза, формируя представление об участии С. в генезе только монополяр-ных депрессий, не позволяет судить о его роли в развитии других форм депрессий, при к-рых определенную роль наряду с С. могут играть изменения баланса других аминов, напр, норадреналина.

Предполагают также, что извращение обмена С. играет известную роль в патогенезе психотических расстройств при шизофрении. Это подтверждают данные о повышении содержания метаболитов С. (напр., буфотенина), обладающих галлюциногенными свойствами, у больных шизофренией с выраженной психотической симптоматикой. При отсутствии такой симптоматики у больных шизофренией не обнаружено указанных изменений метаболизма С.

О роли нарушений обмена С. при эпилепсии высказывают противоречивые точки зрения. Общепризнанным является мнение о том, что истощение запасов серотонина в ц. н. с. сопровождается снижением порога судорожной активности.

Функциональная недостаточность серотонинергической системы мозга, очевидно, служит основным патогенетическим фактором в развитии постаноксической рефлекторной мио-клонии и нек-рых других ее форм (см. Гиперкинезы). Исходя из этих представлений, для лечения миоклонуса используют препараты, повышающие содержание С. в центральной нервной системе, напр, клоназепам, а также комбинации предшественника серотонина альфа-триптофана с ингибиторами МАО.

Роль С. в патогенезе сердечно-сосудистых заболеваний мало изучена. Нарушения обмена С., по-видимому, имеют значение в патогенезе мигрени (см.), т. к. во время приступа мигрени в крови и мозге содержание С. падает, а после окончания приступа повышается. Однако при мигрени леч. эффект оказывают не только препараты, способствующие накоплению С. (напр., ингибиторы МАО), но и нек-рые блокаторы D-серотонинергических рецепторов, напр, метисергид и ципрогептадин.

Несомненно наличие связи между развитием эндомиокардиального фиброза и накоплением С. в организме, напр, вследствие избыточного поступления С. с пищей (бананы, ананасы и др.), что наиболее часто отмечается у жителей нек-рых р-нов Африки. Развитие данной патологии возможно также при кар-циноидном синдроме вследствие повышенного образования С. в организме. Накоплением С. в крови объясняют и многие другие проявления карциноидного синдрома - бронхоспазм, диарею, боли в животе и др. (см. Карциноид). С повышением выделения С. из энтерохромаффинных клеток кишечника связывают также основные признаки демпинг-синдрома (см. Постгастрорезекционные осложнения). О роли С. в патогенезе язвенной болезни желудка существуют взаимоисключающие точки зрения.

В патогенезе воспалительных реакций С. имеет меньшее значение, чем такие медиаторы воспаления, как простагландины (см.) и кинипы (см.). По экспериментальным данным, С. вместе с гистамином (см.) может обусловливать нек-рые начальные проявления острого воспаления (см.), напр, повышение сосудистой проницаемости, экссудацию в очаге воспаления. Однако на нек-рых моделях воспаления (напр., при термическом ожоге) не установлено сколько-нибудь захметного участия G. в развитии воспалительной реакции тканей. О роли С. как медиатора аллергических реакций - см. Медиаторы аллергических реакций.

Агонисты и антагонисты серотонина

Вещества, к-рые при взаимодействии с серотониновыми рецепторами вызывают свойственные С. эффекты, рассматриваются как его агонисты, а вещества^ препятствующие действию С. и его агонистов на соответствующие рецепторы, - как антагонисты С.

Агонистами С. являются трипта-мин, 4-окситрыптамин, бензофура-новые и бензотиофеновые аналоги триптамина, квипазин. Подобно С. они вызывают сокращение гладких мышц, торможение или усиление импульсной активности нейронов ц. н. с., возбуждение нейронов вегетативных ганглиев и окончаний чувствительных нервов, ускорение агрегации тромбоцитов. Другие структурные аналоги С., напр. 5-метокситриптамин (мексамин), 5-метилсеротонин, N-алкил-замещенные триптахмина или серотонина, гармин, гарман, индол-3-ацетамидин, являются парциальными (частичными) агонистами. В больших дозах они ослабляют эффекты С.

Антагонисты С. принадлежат к разным классам хим. соединений. Избирательно действующими антагонистами С. являются производные лизергиновой кислоты (см.) - диэтиламид лизергиновой к-ты (ДЛК), 2-бром-ДЛК, метисергид. Это конкурентные антагонисты С. по действию на гладкие мышцы. Многие другие вещества, напр, ципрогептадин, производные индола и карболина, а также нейролептики из числа производных фенотиазина (аминазин) и бутирофена (пипампе-рон) - сильные, но неспецифические антагонисты серотонина, т. к. они препятствуют действию на гладкие мышцы также гистамина, катехоламинов, ацетилхолина, ионов бария и калия.

ДЛК и метисергид противодействуют возбуждающему действию С. на нервные клетки мозга, но не устраняют его влияния на нейроны вегетативных ганглиев. Конкурентными антагонистами С. по действию на вегетативные ганглии являются морфин и другие наркотические анальгетики. Влияние С. на ганглионарные нейроны неспецифически ослабляется местноанестезирующими и м-холиноблокирующими (атропин) средствами, фенотиазинами, производными индола (м-хлорбензилбу-фотенидин-бромидом) и гуанидина. Коронарный и легочный хеморефлексы (рефлекторная брадикардия и гипотензия), возникающие вследствие возбуждающего влияния С. на окончания афферентных волокон блуждающих нервов в сердце и легких, не устраняются ни ДЛК, ни морфином, но подавляются типиндолом, а также нек-рыми производными индола и гуанидина.

В соответствии с наличием антагонистов, специфически подавляющих определенные эффекты С., серотонинергические рецепторы клеток подразделяют на разные типы.

Агонисты С. используют гл. обр. в экспериментальных исследованиях. Из антагонистов С. в мед. практике применяют метисергид, ципрогепта-дин, цинансерин и пизотифен (сандомигран). Их назначают при кар-циноидном синдроме и демпинг-синдроме, при ангионевротических нарушениях аллергической природы и бронхиальной астме, а также при мигрени.

Агонисты и антагонисты С. можно рассматривать как одну из подгрупп так наз. серотонинергических средств. К другой подгруппе этих средств относят вещества, к-рые в отличие от агонистов и антагонистов С. не взаимодействуют с серотониновыми рецепторами, а влияют на серото-нинергические процессы путем изменения синтеза, депонирования, высвобождения или обратного захвата С. серотонинсодержащими клетками.

Так, ингибиторы синтеза серотонина (д-хлорфенилаланин и др.) и вещества, нарушающие депонирование С., напр, резерпин (см.), тетрабеназин и др., опустошают запасы лабильно и стабильно связанного С. в энтерохромаффинных, тучных и серотонинергических нервных клетках. Опустошение депо С. в серотонинергических нейронах приводит к угнетению их функции. Усиление функции этих нейронов вызывают фенамин (см.) и ингибиторы обратного захвата С., напр, циталопрам, фемоксетин, кломипрамин.

Серотонин как препарат

В мед. практике С. используют в виде соли с адипиновой к-той, т. е. в виде серотонина адипината.

Серотонина адипинат (Serotonini adipinas) - белый или белый с кремоватым оттенком кристаллический порошок без запаха. Растворим в воде, трудно растворим в спирте.

Вызывает эффекты, свойственные С., в т. ч. сокращение гладкой мускулатуры внутренних органов, сужение кровеносных сосудов, увеличивает количество тромбоцитов в крови и повышает их агрегацию, уменьшает время кровотечения.

Применяют как кровоостанавливающее средство при геморрагическом синдроме различного генеза, напр, при болезни Верльгофа, ге-моррагичестеом васкулите, гипо- и апластической анемии, тромбоасте-нии и др.

Вводят внутривенно и внутримышечно в разовой дозе 0,005 г, к-руго при хорошей переносимости можно увеличивать до 0,01 г. Для внутривенных вливаний 0,005-0,01 г препарата разводят в 100-150 мл изотонического р-ра натрия хлорида и вводят капельно со скоростью не более 30 капель в 1 мин. При необходимости для капельного введения в вену вначале препарат можно развести в 5 - 10 мл изотонического р-ра натрия хлорида, а затем добавить этот р-р к 100-мл 5% р-ра глюкозы, плазмы или консервированной крови.

Для внутримышечного введения 0,005-0,01 г препарата разводят в 5 мл 0,5% р-ра новокаина. Инъекции делают 2 раза в сутки с интервалами не менее 4 час. Суточная доза для взрослых 0,015-0,02 г. Курс лечения обычно составляет 10 дней.

Быстрое введение растворов С. в вену может вызвать боль по ходу вены и другие побочные эффекты: неприятные ощущения в области сердца, затруднение дыхания, повышение АД, тяжесть в голове, диарею, уменьшение диуреза. Для ослабления побочного действия С. рекомендуется применять антигистаминные и другие противоаллергические средства.

С. противопоказан при остром и хрон. гломерулонефрите, хрон. нефрозе, гипертонической болезни II-III стадий, бронхиальной астме, отеке Квинке, острых тромбозах и склонности к тромбообразованиго.

Форма выпуска: порошок и ампулы по 1 мл 1% р-ра.

Библиография: Буданцев А. Ю. Моно-аминэргические системы мозга, М., 1976; Громова Е. А. Эмоциональная память и ее механизмы, М., 1980; Комиссаров И. В. Элементы теории рецепторов в молекулярной фармакологии, м., 1969; Кругликов Р. И. Нейрохимические механизмы обучения и памяти, М., 1981; Меньшиков В. В. Методы клинической биохимии гормонов и медиаторов, ч. 2, М., 1974; Меньшиков В. В., Б ас с ал ык Л. С. и Шапиро Г. А. Карциноидный синдром, М., 1972; Науменко Е. В. и Попова Н. К. Серотонин и мелатонин в регуляции эндокринной системы, Новосибирск, 1975, библиогр.; П и д е-в и ч И. Н. Фармакология серотонинореактивных структур, М., 1977, библиогр.; Планельес X. X. и П о и е н е н-к о з а 3. А. Серотонин и его значение в инфекционной патологии, М., 1965, библиогр.; Попова Н. К., Науменко Е. В. и Колпаков В. Г. Серотонин и поведение, Новосибирск, 1978; Химические факторы регуляции активности и биосинтеза ферментов, под ред. В. Н. Ореховича, с. 158, М., 1969; Chemical diagnosis of disease, ed. by S. S. Brown a. o.. p. 1217, Amsterdam a. o., 1979; Dahl strom A. a. F u x e K. Evidence for the existence of monoamino-containing neurons in the central nervous system, Acta physiol, scand., suppl. 232, 1964; D e-scarries L., Beaudet A. a. Watkins К. C. Serotonin nerve terminals in adult rat neocortex, Brain Res., v. 100. p. 563, 1975; H a i g 1 e r H. J. a. Aghajanian G. K. Serotonin receptors in the brain, Fed. Proc., v. 36, p. 2159, 1977, bibliogr.; Serotonin and behavior, ed. by J. Barclias a. E. Usdin, N.Y.-L., 1973; Vermes I. a. T e- 1 e g d у G. Effect of intraventricular injection and intrahypothalamic implantation of serotonin on the hypothalamo-hypophysealadrenal system in the rat, Acta physiol. Acad. Sci. hung., v. 42, p. 49, 19 72, bibliogr.

В. В. Меньшиков; E. А. Громова, В. К. Муратов (пат. физ.), С. И. Золотухин, А. Я. Ивлева, И. В. Комиссаров (фарм.)

Противорвотные средства

Рвотный центр (рис. 52) находится в продолговатом мозге. Возбуждается импульсами от коры головного мозга (неприятный вид, запах), при раздражении рецепторов вестибулярного аппарата (болезнь движения), рецепторов глотки, желудка (серотониновые 5-НТ 3 -рецепторы на окончаниях афферентных волокон вагуса). Кроме того, рвотный центр возбуждается при стимуляции рецепторов триггер-зоны рвотного центра (расположена в дне IV желудочка мозга; не защищена гематоэнцефалическим барьером).

Рвота вызывается сокращениями брюшных мышц и диафрагмы на фоне расслабления нижнего сфинктера пищевода, мышц желудка и сокращения пилорического сфинктера.

В качестве противорвотных средств применяют действующие на ЦНС М-холиноблокаторы, блокаторы гистаминовых H 1 -рецепторов, блокаторы дофаминовых D 2 -рецепторов, блокаторы серотониновых 5-НТ 3 -рецепторов, дронабинол.

Из М-холиноблокаторов в качестве противорвотного средства обычно применяют скополамин. Препарат эффективен при рвоте, связанной с раздражением рецепторов вестибулярного аппарата. В частности, его применяют при болезни движения (воздушная болезнь, морская болезнь) в составе таблеток «Аэрон» за 0,5 ч до полета, поездки по морю. Длительность действия около 6 ч.

Для более продолжительного действия используют трансдермаль-ную терапевтическую систему (пластырь) со скополамином. Пластырь наклеивают на здоровую кожу (обычно за ухом); длительность действия 72 ч.

При болезни движения могут быть эффективными блокаторы гистаминовых H 1 -рецепторов - прометазин, дифенгидрамин.

Прометазин (дипразин, пипольфен) - производное фенотиази-на, эффективный противоаллергический препарат, применяется также в качестве противорвотного средства при болезни движения, лабиринтных нарушениях, после хирургических операций. Препарат назначают внутрь, а также вводят внутримышечно или внутривенно медленно.

Как и другие фенотиазины, прометазин обладает М-холинобло-кирующими и a-адреноблокирующими свойствами; может вызывать сухость во рту, нарушения аккомодации, задержку мочеиспускания, снижение артериального давления. У прометазина выражено седативное действие. При его применении могут быть кожные сыпи, фотосенсибилизация кожи.

Дифенгидрамин (димедрол) - противоаллергическое и снотворное средство. Противорвотное действие дифенгидрамина проявляется в основном при болезни движения.

Блокаторы D 2 -рецепторов эффективны при рвоте, связанной с возбуждением ре~цепторов триггер-зоны рвотного центра, в частности, при инфекционных заболеваниях, рвоте беременных, химиотерапии опухолей, при действии веществ, которые стимулируют D 2 -рецепторы (апоморфин и др.). В качестве противорвотных средств применяют тиэтилперазин (торекан), перфеназин (этаперазин), галоперидол, метоклопрамид, домперидон и др. Противорвотному действию метоклопрамида и домперидона способствуют и их гастрокинети-ческие свойства (повышение тонуса нижнего сфинктера пищевода, усиление моторики желудка, открытие пилорического сфинктера).

При рвоте, связанной с применением химиотерапевтических (ци-тостатических) противоопухолевых средств (стимулируют выделение из энтерохромаффинных клеток кишечника серотонина, действующего на 5-НТ 3 -рецепторы окончаний афферентных волокон вагуса), из указанных препаратов эффективным оказался метоклопрамид, который, кроме D 2 -рецепторов, умеренно блокирует серотониновые 5-НТ 3 -рецепторы. Метоклопрамид назначают внутрь, а в более тяжелых случаях вводят внутримышечно или внутривенно медленно при рвоте, связанной с химиотерапией или радиотерапией опухолей, с заболеваниями желудочно-кишечного тракта, мигренью.

Более эффективными при рвоте, связанной с применением противоопухолевых средств, радиотерапией опухолей, оказались блокаторы 5-НТ 3 -рецепторов ондансетрон, трописетрон, гранисетрон. Эти препараты наиболее эффективны также для профилактики и лечения послеоперационной рвоты. Противорвотное действие указанных препаратов связано с блокадой 5-НТ 3 -рецепторов в триггер-зоне рвотного центра и в окончаниях афферентных волокон вагуса. Препараты назначают внутрь и вводят внутривенно.

Побочные эффекты: головная боль, слабость, констипация или диарея, задержка мочеиспускания.

В тех случаях, когда у больных, получающих противоопухолевые средства, указанные препараты недостаточно эффективны, внутрь назначают дронабинол - препарат тетрагидроканнабинола (действующее начало индийской конопли), который, в частности, обладает противорвотными свойствами (табл. 11).

Побочные эффекты дронабинола: эйфория (не всегда приятна онкологическим больным), дисфория, лекарственная зависимость, а-адреноблокирующее действие (снижение артериального давления, тахикардия, ортостатическая гипотензия), снижение уровня тестостерона, снижение количества сперматозоитов, иммунитета.


ПРОТИВОРВОТНЫЕ СРЕДСТВА

Противорвотный эффект могут оказывать препараты, действующие на разные звенья нервной регуляции акта рвоты:

1) если рвота вызвана местным раздражением желудка, то после удаления раздражающих веществ могут быть использованы обволакивающие (препараты семян льна, риса, крахмал и т. п.), вяжущие (танин, танальбин, плоды черемухи и т. п.) средства, а лучше - комбинированный антацидный препарат - АЛМАГЕЛЬ А;

2) если рвота обусловлена возбуждением нейронов рвотного центра (или пусковой зоны), то используют другие средства. Раньше применяли седативные и снотворные, но теперь созданы современные нейротропные препараты.

Эти препараты можно разделить на следующие подгруппы:

1. Холинолитические, или М-холиноблокаторы . Применяют в основном для профилактики и лечения морской и воздушной болезней, а также при болезни Меньера. Это заболевания, при которых рвота обусловлена раздражением вестибулярного аппарата. Используют, как правило, М-холиноблокаторы типа СКОПОЛАМИНА и ГИОСЦИАМИНА. Данные алкалоиды вместе с атропином содержатся в красавке, белене, дурмане, скополии.

Выпускаются таблетки "АЭРОН" (0, 0005) - содержащие скополамин и гиосциамин. Назначают по 1-2 таблетке в сутки.

С этими же целями используют следующую подгруппу средств:

2. Противогистаминные препараты - Н1-гистаминоблокаторы (димедрол, дипразин - наиболее активен и даже эффективен при рвоте любого генеза, в том числе и при вестибулярной рвоте).

Весьма действенными противорвотными средствами являются

нейролептики. Это третья подгруппа нейротропных противорвотных средств.

3. Нейролептики и прежде всего, производные фенотиазина : АМИНАЗИН, ТРИФТАЗИН, ЭТАПЕРАЗИН, ФТОРФЕНАЗИН, ТИЭТИЛПЕРАЗИН (ТОРЕКАН) и другие. Лучшим считается тиэтилперазин (торекан) в связи с сильным избирательным действием и отсутствием побочных эффектов. Кроме того, используются нейролептики - производные бутирофенона (ГАЛОПЕРИДОЛ, ДРОПЕРИДОЛ), которые также эффективны при рвоте центрального генеза.

Противорвотное средство ДОМПЕРИДОН (МОТИЛИУМ; в таб. по 0, 01) - по структуре близко к группе препаратов бутирофенона (дроперидол, пимозид), а по действию схоже с метоклопрамидом. Является антагонистом D2-рецепторов , не проникает через гематоэнцефалический барьер (в отличие от церукала) и не вызывает экстрапирамидных расстройств.

Препарат показан при функциональных расстройствах ЖКТ, гипотонии желудка, рефлюкс-эзофагите. Препарат смягчает дискинезию желчевыводящих путей.

Побочные эффекты : повышение уровня пролактина, головная боль, сухость во рту, головокружение.

Противорвотное действие нейролептиков связано главным образом с их тормозящим действием на D-рецепторы (дофаминовые) хеморецепторной пусковой зоны рвотного центра.

Помимо блокаторов D-рецепторов, противорвотным действием обладают препараты, блокирующие серотониновые рецепторы.

Блокаторы серотониновых 5-НТ3 (или S3-)-рецепторов

(5-НТ - от слов 5-Hydroxy Tryptophan, S - от Serotonine).

Подтипы рецепторов серотонина:

5-НТ1 - (или S1) рецепторы представлены главным образом

в гладких мышцах ЖКТ;

5-НТ2 - (или S2) в гладкой мускулатуре сосудов, бронхов, на тромбоцитах;

5-НТ3 - (или S3) в периферических тканях и в ЦНС.

Одним из новых противорвотных средств, применяемых для профилактики рвоты при химиотерапии онкобольных, является препарат ТРОПИСЕТРОН (Tropiseptronum; синоним - НАВОБАН; выпускается в капсулах по 0, 005 и в амп. по 5 мл 0, 1% раствора). Продолжительность действия препарата 24 часа.

Трописетрон показан для профилактики рвоты при проведении химиотерапии у онкобольных, курс - 6 дней. Суточная доза составляет 0, 005, которую назначают до еды.

Побочные эффекты: диспепсии, головокружение, запоры, повышение АД. Наконец, есть препараты, обладающие противорвотной активностью, но имеющие смешаный характер действия.

5. МЕТОКЛОПРАМИД (Metoclopramidum; синонимы - РЕГЛАН, ЦЕРУКАЛ; в таб. по 0, 01 и по 2 мл (10 мг) в амп.) - препарат, являющийся специфическим блокатором дофаминовых (D2), а также серотониновых (5-НТ3) рецепторов. Является существенно более

активным, нежели другие средства (например, аминазин).

Препарат оказывает:

Противорвотное и противоикотное действие.

Кроме того, он регулирует функцию ЖКТ, нормализует тонус и моторику его;

Способствует заживлению язвы желудка и двенадцатиперстной кишки.

Как противорвотное метоклопрамид показан при:

Интоксикации сердечными гликозидами;

Для профилактики побочных эффектов цитостатиков и антибластомных антибиотиков;

Нарушениях диеты;

Комплексной терапии язвенного больного, больных с гастритыми;

Дискинезии оганов брюшной полости, метеоризме;

Рвоте беременных;

Препарат применяют:

Для улучшения качества рентгенодиагностики заболеваний желудка и тонкой кишки;

При мигрени, синдроме Туретта (генерализованные тики и вокализация у детей).

Побочные эффекты : редко возможны явления паркинсонизма (необходимо вводить кофеин), а также сонливость, шум в ушах, сухость во рту.

Назначают препарат после еды.


Похожая информация.


Основными классами рецепторов, участвующих в регуляции моторно-эвакуаторной функции желудочно-кишечного тракта (ЖКТ), являются холинергические, адренергические, допаминергические, серотониновые, мотилиновые и холецистокининовые. Препараты, применяемые при депрессивных и тревожных расстройствах, панических атаках и других вегетативных дисфункциях, действуют на те же рецепторы, которые отвечают за моторно-эвакуаторную функцию желудочно-кишечной трубки. Регулирование деятельности гладкой мускулатуры и подвижности кишечника происходит на нескольких уровнях. Гормоны и нейротрансмиттеры являются доминирующими компонентами, которые прямо или косвенно воздействуют на гладкомышечные клетки. Постпрандиальный эндокринный ответ включает в себя выработку инсулина, нейротензина, холецистокинина (ХХК), гастрина, глюкагоноподобных пептидов (ГПП-1 и ГПП-2), глюкозозависимый инсулинотропный полипептид (ГИП, ранее известный как желудочный ингибиторный пептид) , данные об эффектах нейромедиаторов и гормонов представлены в табл. 1. Например, ХХК выделяется в проксимальных отделах тонкой кишки и непосредственно влияет на сокращение мышечных клеток желчного пузыря и нейромедиированную релаксацию мышц клеток сфинктера Одди, которая опосредуется через ГИП нервно-мышечные соединения.

В настоящей статье особое внимание уделено серотонинергическим рецепторам, которые являются одними из важных регуляторов кишечной перистальтики. Серотонин, или 5-гидрокситриптамин (5-HT), — моноаминовый нейромедиатор, который является главным посредником в физиологии психологического состояния и настроения человека, а также одним из регуляторов функции сосудов и желудочно-кишечной моторики. 5-HT, как известно, представлен в тромбоцитах, ЖКТ и центральной нервной системе человека и животных . Серотонин вырабатывается в организме человека из поступившей с пищей аминокислоты триптофана — так как именно она нужна для непосредственного синтеза серотонина в синапсах; второй путь выработки серотонина связан с поступлением глюкозы с углеводной пищей, которая стимулирует выброс инсулина в кровь, далее происходит катаболизм белка в тканях, что также приводит к повышению уровня триптофана в крови.

На основе биохимических и фармакологических критериев 5-HT-рецепторы подразделяются на семь основных подтипов, пять из которых находятся в кишечных нейронах, энтерохром-аффинных (ЭХ) клетках и в гладкой мускулатуре ЖКТ — это 5-HT 1 , 5-HT 2 , 5-HT 3 , 5-НТ 4 и 5-HT 7 . Около 80% от общего количества 5-НТ-рецепторов находятся в ЭХ-клетках кишечника, где они принимают участие в кишечной перистальтике через несколько подтипов 5-HT-рецепторов . За исключением 5-HT 3 -рецепторов, лиганда закрытого ионного канала, все 5-HT-рецепторы связываются с рецепторами G-белка, которые активируют внутриклеточные реакции второго каскада, стимулируя возбуждающие или тормозные реакции в ЖКТ . Серотонин обладает хорошо изученным воздействием на кишечную моторику, секрецию и сенситивность через центральные и периферические нейромедиаторные пути, что делает его ключевым фармакологическим средством, применяемым в лечении моторных нарушений ЖКТ . Серотонин высвобождается из ЭХ-клеток в ответ на химическое или механическое раздражение слизистой оболочки или в ответ при экспериментальных моделях стресса . Серотонин синтезируется и хранится не только в ЭХ-клетках (90%), но и в нейронах кишечника (10%). Как говорилось выше, 5-HT выделяется в кровь после приема пищи и в ответ на изменения давления в кишечной стенке, а также при воздействии вредных раздражителей , а затем поступает в просвет кишечника и далее в его стенки из базолатерального депо ЭХ-клеток . 5-HT стимулирует круговые и продольные мышцы желудка, двенадцатиперстной кишки и тощей кишки . Важно стратегическое расположение ЭХ-клеток в непосредственной близости от сенсорных нервных окончаний слизистой оболочки кишечника, интерганглионарных нейронов и синапсов двигательных возбуждающих и тормозных нейронов. Серотонин увеличивает сокращение амплитуды мышц желудка, двенадцатиперстной кишки, тощей кишки и подвздошной кишки . В тонкой кишке 5-HT стимулируют круговые сокращения мышц в течение первой манометрической фазы, вызываемые сокращения распространяются, становятся более частыми и активируют быстрые моторные комплексы . В толстой кишке серотонин стимулирует подвижность на протяжении всей длины, вызывая фазовые сокращения, но не гигантские двигательные комплексы . Кишечные гладкомышечные ритмические колебания определяются спонтанной активностью интерстициальных клеток Кахаля, которые работают как кардиостимулятор для клеток в ЖКТ . Кишечная нервная система (КНС) состоит из полуавтономных эффекторных систем, которые связаны с центральной вегетативной системой. При освобождении серотонина из энтерохромаффинных клеток происходит инициация вагусных рефлексов — перистальтических, выделительных, сосудорасширяющих, ноцицептивных. Парасимпатический и симпатический отделы вегетативной нервной системы образуют КНС через афферентные и эфферентные связи. Текущие двунаправленные отношения рефлекторной дуги «мозг-кишка» с участием 5-HT оказывают существенное влияние на эффекторные системы. Нарушенная 5-HT-трансмиссия может привести к возникновению как кишечных, так и внекишечных проявлений синдрома раздраженного кишечника (СРК) .

Степень участия в функциональной перистальтической активности ЖКТ различных 5-HT подразделяется следующим образом — 5-HT 3 — 65%, 5-НТ 4 — 85% и 5-HT 7 — 40%. В сочетании антагонисты этих рецепторов, приведенные в парах, способны уменьшить перистальтическую активность кишечника примерно на 16% (5-HT 3 + 5-HT4), на 70% (5-HT 3 + 5-HT 7) и на 87% (5-HT 4 + 5-HT 7), а одновременное введение всех трех антагонистов неизбежно блокирует всю перистальтическую активности. Таким образом, 5-HT-рецепторы играют ключевую роль в модуляции кишечной перистальтики с одновременной блокадой трех рецепторов и подавляют перистальтическую активность. Среди 5-HT-рецепторов ЖКТ подтип 5-HT 4 наиболее функционально важен для перистальтики, а 5-HT 3 - и 5-HT 7 -рецепторы играют несколько менее активную роль в этом процессе, что отражено в табл. 2 и на рис. 1 .

5-HT 4 -агонисты были доступны с введением в клиническую практику метоклопрамида в 1964 г. Этот препарат является антагонистом дофаминовых D 2 - и 5-HT 3 -рецепторов, а также агонистом 5-HT 4 -рецепторов и до сих пор широко используется во всем мира. Его успех привел к разработке альтернативных молекул, которые не влияют на D 2 -рецепторы, устраняя тем самым такие неблагоприятные события, как акатизия и экстрапирамидные двигательные расстройства.

Серотониновые рецепторы, в частности, 5-HT 3 и 5-НТ 4 , участвуют в сенсорных и рефлекторных реакциях на раздражители при гастроинтестинальных расстройствах, обусловливая такие проявления, как рвота, запор или диарея, нарушения пищевого поведения, боли в животе, измененные сенсомоторные рефлексы . Было высказано предположение, что селективные ингибиторы обратного захвата серотонина (СИОЗС) могут влиять на функцию 5-HT 3 -рецепторов, а также могут улучшить симптоматику СРК и сопутствующей депрессии у пациентов. Согласно ряду исследований и обзоров , трициклические антидепрессанты (амитриптилин, Мелипрамин), антидепрессанты ряда СИОЗС, такие как флуоксетин, пароксетин, циталопрам, кломипрамин, литоксетин, тразодон, и ряда селективных ингибиторов обратного захвата серотонина и норадреналина (СИОЗСиН) (дулоксетин) улучшают симптомы СРК. Долгосрочные побочные эффекты данной терапии являются общими для лечения антидепрессантами и связаны с антихолинергическим, серотонинергическим, седативным, антигистаминым и альфа-адренергическим эффектами. Эти эффекты необходимо учитывать при выборе подхода к лечению, поскольку описанные выше препараты влияют на моторику кишечника, функция кишечника пациента также должна учитываться при выборе серотонинергических препаратов (рис. 2) .

Как указывалось ранее, 5-HT 1 -, 5-HT 3 - и 5-НТ 4 -подтипы рецепторов играют важную роль в двигательных, чувствительных и секреторных функциях ЖКТ. Препараты, непосредственно влияющие на 5-HT-рецепторы, в отличие от трициклических антидепрессантов и СИОЗС, модулируют 5-гидрокситриптамин (5-HT) путем связывания с 5-HT-рецепторами, их характеристики отражены в табл. 3. Кишечные функции 5-HT-рецепторов связаны с гладкими мышцами, увеличением количества дефекаций, а также со снижением кишечного транзитного времени . Блокада 5-НТ 3 -рецепторов, в частности противорвотными средствами типа ондансетрона, приводит к запорам . В течение последнего десятилетия были разработаны и испытаны блокаторы 5-НТ 3 -рецепторов — алосетрон и силансетрон при СРК-Д (СРК с диареей). Недавний систематический обзор и метаанализ 11 рандомизированных контролируемых исследований (РКИ) сравнения этих двух 5-НТ 3 -антагонистов с плацебо выявили положительный эффект препаратов . Тем не менее, ряд редких побочных эффектов, включая ишемический колит и тяжелые запоры, привел к тому, что производство алосетрона и исследования по силансетрону были приостановлены . Алосетрон сегодня доступен только по строгим показаниям (в США) для пациенток с тяжелым резистентным СРК с диареей, которые не ответили на первую или вторую линии терапии.

5-HT 4 -агонисты доказали свой терапевтический потенциал для лечения больных с нарушениями моторики ЖКТ. Препараты, у которых отсутствует селективность к 5-HT 4 -рецепторам, имеют ограниченный клинический успех в гастроэнтерологической практике. Например, наряду со сродством к 5-HT 4 -рецепторам, такие препараты, как цизаприд и тегасерод, имеют заметное сродство и к другим рецепторам, каналам или белкам-трансмиттерам. Неблагоприятные кардиоваскулярные события, наблюдаемые при применении этих средств, связаны с их неселективностью и перекрестными эффектами. Систематический обзор и метаанализ показали, что тегасерод превосходит плацебо при лечении запоров, в том числе и при СРК. Большинство исследований, относящихся к тегасероду, проводились с участием женщин, и в результате препарат первоначально был одобрен для лечения СРК-З (СРК с запором) только у женщин. Тем не менее, маркетинг тегасерода был также приостановлен, когда стали сообщаться данные о возможном росте сердечно-сосудистых и цереброваскулярных событий на фоне приема препарата .

Важным событием в клинической фармакологии стало открытие селективного лиганда (лиганд, от лат. ligare — связывать, атом, ион или молекула, связанные с неким центром (акцептором), термин применяется в биохимии для обозначения агентов, соединяющихся с биологическими акцепторами — рецепторами, иммуноглобулинами и др.) к 5-HT 4 -рецептору — прукалоприда (prucalopride). Избирательность этого нового препарата значительно отличает его от старших поколений альтернативных препаратов благодаря сведению к минимуму возможностей побочных эффектов. Кроме того, концепция поиска аналогичных лигандов открывает широкие возможности для дальнейшей разработки лекарственных препаратов и создания агонист-специфических эффектов в различных типах клеток, тканей или органов. Селективный агонист 5-HT 4 -рецепторов прукалоприд является инновационным препаратом с привлекательным профилем безопасности для лечения пациентов, страдающих гипомоторными расстройствами ЖКТ . Прукалоприд имеет высокое сродство и избирательность к 5-HT 4 -рецепторам ЖКТ. За время существования препарата прукалоприд было проведено несколько крупных и долгосрочных исследований, которые позволили в полной мере оценить риски и преимущества использования прукалоприда при хронических запорах . В целом прием прукалоприда был связан с последовательным и значительным улучшением удовлетворенности пациентов в их лечении, по оценке опросника качества жизни при запорах (Patient Assessment of Constipation Quality of Life questionnaire — PAC-QOL). Доля участников, получавших прукалоприд в дозе 2 мг в сутки, которые отметили улучшение ≥ 1 пункт по 5-балльной подшкале PAC-QOL, составила 45,3%, по сравнению с 21,3% среди тех больных, кто получал плацебо (р ≤ 0,001), но число ответчиков почти во всех исследованиях было менее 50%. В ходе других испытаний — PRU-США-11 и PRU-США-13 — не было выявлено никакого существенного различия между прукалопридом и плацебо во всех суррогатных точках. Общая частота нежелательных явлений была статистически достоверно чаще у пациентов, получавших прукалоприд (72%), по сравнению с пациентами, принимавшими плацебо (59%) (отношение рисков (ОР) 1,21, 95% доверительный интервал (ДИ): 1,06, 1,38). Неблагоприятные события, которые наиболее часто сообщали пациенты, получавшие прукалоприд, были головная боль (до 30%), тошнота (до 24%), диарея (до 5%), боли в животе и метеоризм (до 23%), головокружение (до 5%) и инфекции верхних дыхательных путей . R. Cinca и соавт. сравнили эффективность, безопасность и влияние на качество жизни макрогола и прукалоприда у 240 женщин с хроническими запорами, которым другие слабительные не обеспечивали адекватную помощь. В этом исследовании макрогол оказался более эффективным для лечения хронического запора, чем прукалоприд, и лучше переносился . В итоге можно сделать вывод, что прукалоприд может назначать врач, имеющий опыт в лечении хронических запоров, женщинам от 18 до 75 лет в том случае, если в их лечении не были эффективны другие слабительные средства.

Важно знать, что не всегда у пациентов бывает дефицит серотонина, в ряде случаев врач может сталкиваться с его избытком. У беспокойных гастроэнтерологических пациентов, которые имеют повышенное содержание серотонина, развивается аэрофагия, что вызывает увеличение воздушного пузыря в желудке и приводит к раздражению рецепторного аппарата . Повышенный уровень серотонина обуславливает частую тошноту и рвоту вследствие активации блуждающего нерва, диарею или спастический запор, гастроинтестинальные панические атаки, головную боль, тремор, гипергидроз, волнение и тревогу, сердцебиение, нестабильное артериальное давление, бессонницу.

Серотонин играет важную роль не только в регуляции моторики и секреции в ЖКТ, усиливая его перистальтику и секреторную активность, но и является фактором роста для некоторых видов симбиотических микроорганизмов, усиливает бактериальный метаболизм в толстой кишке. Сами бактерии толстой кишки также вносят некоторый вклад в секрецию серотонина кишечником, поскольку многие виды симбиотических бактерий обладают способностью декарбоксилировать триптофан. При дисбиозе и ряде других заболеваний толстой кишки продукция серотонина кишечником значительно снижается. Массивное высвобождение серотонина из погибающих клеток слизистой желудка и кишечника при воздействии цитотоксических химиопрепаратов является одной из причин возникновения тошноты и рвоты, а также диареи при химиотерапии злокачественных опухолей .

Трудно переоценить роль серотонина в организме человека. В передней части мозга под воздействием серотонина стимулируются области, ответственные за процесс познавательной активности, а повышение серотонинергической активности создает в коре головного мозга ощущение подъема настроения. Поступающий в спинной мозг серотонин положительно влияет на двигательную активность и тонус мышц, это состояние можно охарактеризовать фразой «горы сверну». Кроме настроения, серотонин «отвечает» за самообладание или эмоциональную устойчивость. Серотонин контролирует восприимчивость мозговых рецепторов к стрессовым гормонам адреналину и норадреналину. У людей с пониженным уровнем серотонина малейшие поводы вызывают обильную стрессовую реакцию. Отдельные исследователи считают, что доминирование особи в социальной иерархии обусловлено именно высоким уровнем серотонина .

Заключение

Когда в организм поступает пища, в том числе содержащая триптофан, увеличивается выработка серотонина, что повышает настроение. Мозг быстро улавливает связь между этими явлениями и, в случае депрессии (серотонинового голодания), незамедлительно «требует» дополнительного поступления пищи с триптофаном или глюкозой. Наиболее богаты триптофаном продукты, которые почти целиком состоят из углеводов, например, хлеб, бананы, шоколад, инжир, курага, финики, изюм, арбузы и т. п. Перечисленные продукты давно известны и как регуляторы кишечной перистальтики. Их дефицит в питании приводит к депрессиям и проблемам ЖКТ, что можно часто наблюдать у людей, соблюдающих строгую низкокалорийную диету. По этой причине прежде чем назначать пациенту лекарственные препараты, повышающие уровень серотонина, необходимо уточнить причину его дефицита. Знание о деталях строения серотониновых рецепторов, несомненно, найдет применение в лечении пациентов некардиотоксичными аналогами серотонина или препаратами, повышающими уровень серотонина, которые будут выполнять свою целебную функцию и окажутся приятны во всех отношениях, например, такие как шоколад . Препараты, повышающие уровень серотонина в синаптической щели и способствующие усилению его эффектов, относятся к группе антидепрессантов. Сегодня они являются одними из самых назначаемых лекарств врачами общей медицинской практики многих стран мира, в том числе Европы и Северной Америки. Своевременное назначение антидепрессантов как в монотерапии, так и в схемах лечения различных заболеваний, позволяет повысить эффективность лечения основного заболевания и улучшить качество жизни пациентов, особенно у пациентов гастроэнтерологического профиля.

Литература

  1. Medhus A. W., Sandstad O., Naslund E. at al. The influence of the migrating motor complex on the postprandial endocrine response // Scand J Gastroenterol. 1999. 34. Р. 1012-1018.
  2. Buchheit K. H., Engel G., Mutschler E., Richardson B. Study of the contractile effect of 5-hydroxytryptamine (5-HT) in the isolated longitudinal muscle strip from guinea-pig ileum. Evidence for two distinct release mechanisms // Naunyn Schmiedebergs Arch Pharmacol. 1985. 329. Р. 36-41.
  3. Kim D. Y., Camilleri M.
  4. Woollard D. J., Bornstein J. C., Furness J. B. Characterization of 5-HT receptors mediating contraction and relaxation of the longitudinal muscle of guinea-pig distal colon in vitro // Naunyn Schmiedebergs Arch Pharmacol. 1994. 349. Р. 455-462.
  5. Yamano M., Ito H., Miyata K. Species differences in the 5-hydroxytryptamine-induced contraction in the isolated distal ileum // Jpn J Pharmacol. 1997. 74. Р. 267-274.
  6. De Maeyer J. H., Lefebvre R. A., Schuurkes J. A. 5-HT4 receptor agonists: similar but not the same // Neurogastroenterol Motil. 2008. 20. Р. 99-112.
  7. Hannon J., Hoyer D.
  8. Kim D. Y., Camilleri M. Serotonin: a mediator of the brain-gut connection // Am J Gastroenterol. 2000. 95. Р. 2698-2709.
  9. Berger M., Gray J. A., Roth B. L. The expanded biology of serotonin // Annu Rev Med. 2009. 60. Р. 355-366.
  10. Hannon J., Hoyer D. Molecular biology of 5-HT receptors // Behav Brain Res. 2008. 195. Р. 198-213.
  11. Crowell M. D. Role of serotonin in the pathophysiology of the irritable bowel syndrome // Br J Pharmacol. 2004. 141. Р. 1285-1293.
  12. Gershon M. D. Plasticity in serotonin control mechanisms in the gut // Curr Opin Pharmacol. 2003. 3. Р. 600-607.
  13. Bearcroft C. P., Perrett D., Farthing M. J. Postprandial plasma 5-hydroxytryptamine in diarrhoea predominant irritable bowel syndrome: a pilot study // Gut. 1998. 42. Р. 42-46.
  14. Hansen M. B. Small intestinal manometry // Physiol Res. 2002. 51. Р. 541-556.
  15. Fishlock D. J., Parks A. G., Dewell J. V. Action of 5-hydroxytryptamine on the human stomach, duodenum, and jejunum in vitro // Gut. 1965. 6. Р. 338-342.
  16. Hopkinson G. B., Hinsdale J., Jaffe B. M. Contraction of canine stomach and small bowel by intravenous administration of serotonin. A physiologic response? // Scand J Gastroenterol. 1989. 24. Р. 923-932.
  17. Hansen M. B., Gregersen H., Husebye E., Wallin L. Effect of serotonin and ondansetron on upper GI manometry in healthy volunteers // Neurogastroenterol Motil. 2000. 12. Р. 281.
  18. Boerckxstaens G. E., Pelckmans P. A., Rampart M. at al. Pharmacological characterization of 5-hydroxytryptamine receptors in the canine terminal ileum and ileocolonic junction // J Pharmacol ExpTher. 1990. 254. Р. 652-658.
  19. Alberti E., Mikkelsen H. B., Larsen J. O., Jimenez M. Motility patterns and distribution of interstitial cells of Cajal and nitrergic neurons in the proximal, mid- and distal-colon of the rat // Neurogastroenterol Motil. 2005. 17. Р. 133-147.
  20. Sanders K. M. A case for interstitial cells of Cajal as pacemakers and mediators of neurotransmission in the gastrointestinal tract // Gastroenterology. 1996. 111. Р. 492-515.
  21. Thomsen L., Robinson T. L., Lee J. C. at al. Interstitial cells of Cajal generate a rhythmic pacemaker current // Nat Med. 1998. 4. Р. 848-851.
  22. Park S. Y., Je H. D., Shim J. H., Sohn U. D. Characteristics of spontaneous contraction in the circular smooth muscles of cat ileum // Arch Pharm Res. 2010. 33. Р. 159-165.
  23. Crowell M. D. Role of serotonin in the pathophysiology of the irritable bowel syndrome // Br J Pharmacol. 2004. 141 (8). Р. 1285-1293.
  24. Balestra B., Vicini R., Pastoris O. at al. 5-HT receptors and control of intestinal motility: expression and hierarchic role // Poster Session, Bologna. 2011.
  25. Read N. W., Gwee K. A. The importance of 5-hydroxytryptamine receptors in the gut // Pharmacol Ther. 1994. Apr-May; 62 (1-2). Р. 159-173.
  26. Lucchelli A., Santagostino-Barbone M. G., Barbieri A. at al. The interaction of antidepressant drugs with central and peripheral (enteric) 5-HT3 and 5-HT4 receptors // Br J Pharmacol. 1995. Mar; 114 (5). Р. 1017-1025.
  27. Ford A. C., Talley N. J., Schoenfeld P. S., Quigley E. M., Moayyedi P. Efficacy of antidepressants and psychological therapies in irritable bowel syndrome: systematic review and meta-analysis // Gut. 2009. Mar; 58 (3). Р. 367-378.
  28. Friedrich M., Grady S. E., Wall G. C. Effects of antidepressants in patients with irritable bowel syndrome and comorbid depression // Clin Ther. 2010. Jul; 32 (7). Р. 1221-1233.
  29. Chial H. J., Camilleri M., Burton D. at al. Selective effects of serotonergic psychoactive agents on gastrointestinal functions in health // Am J Physiol Gastrointest Liver Physiol. 2003. 284. G130-G137.
  30. Turvill J. L., Connor P., Farthing M. J. The inhibition of cholera toxin-induced 5-HT release by the 5-HT (3) receptor antagonist, granisetron, in the rat // Br J Pharmacol. 2000. 130. Р. 1031-1036.
  31. Ruckebusch Y., Bardon T. Involvement of serotonergic mechanisms in initiation of small intestine cyclic motor events // Dig Dis Sci. 1984. 29. Р. 520-527.
  32. Haus U., Spath M., Farber L. Spectrum of use and tolerability of 5-HT 3 receptor antagonists // Scand J Rheumatol Suppl. 2004. 119. Р. 12-18.
  33. Ford A. C., Brandt. L. J., Young C. at al. Efficacy of 5-HT 3 antagonists and 5-HT 4 agonists in irritable bowel syndrome: Systematic review and metaanalysis // Am J Gastroenterol. 2009. 104. Р. 1831-1843.
  34. US Food and Drug Administration. Glaxo Wellcome withdraws irritable bowel syndrome medication // FDA Consum. 2001. 35. Р. 3.
  35. Johanson J. F., Drossman D. A., Panas R., Wahle A., Ueno R . Clinical trial: phase 2 study of lubiprostone for irritable bowel syndrome with constipation // Aliment. Pharmacol. 2008. 27. Р. 685-696.
  36. Camilleri M., Kerstens R., Rykx A., Vandeplassche L. A Placebo-Controlled Trial of Prucalopride for Severe Chronic Constipation // N Engl J Med. 2008. 358. Р. 2344-2354.
  37. Tack J., van Outryve M., Beyens G., Kerstens R., Vandeplassche L. Prucalopride (Resolor) in the treatment of severe chronic constipation in patients dissatisfied with laxatives // Gut. 2009; 58: 357-565.
  38. Quigley E. M., Vandeplassche L., Kerstens R., Ausma J. Clinical trial: the efficacy, impact on quality of life, and safety and tolerability of prucalopride in severe chronic constipation a 12-week, randomized, double-blind, placebo-controlled study // Aliment Pharmacol Ther. 2009; 29: 315-328.
  39. Cinca R., Chera D., Gruss H. J., Halphen M. Randomised clinical trial: macrogol/PEG 3350+electrolytes versus prucalopride in the treatment of chronic constipation — a comparison in a controlled environment // Aliment Pharmacol Ther. 2013. May; 37 (9). Р. 876-886.
  40. Буров Н. Е. Тошнота и рвота в клинической практике (этиология, патогенез, профилактика и лечение) // Российский медицинский журнал. 2002. № 16. С. 390-395.
  41. Баринов Э. Ф., Сулаева О. Н. Роль серотонина в физиологии и патологии желудочно-кишечного тракта // РЖГГК. 2012. Т. 21. № 2. С. 4-13.
  42. Ашмарин И. П., Ещенко Н. Д., Каразеева Е. П. Нейрохимия в таблицах и схемах. М.: «Экзамен», 2007. 143 с.
  43. Palczewski K., Kiser P. D. As good as chocolate // Science. 2013. 340. Р. 562-563.

Е. Ю. Плотникова 1 ,
О. А. Краснов, доктор медицинских наук, профессор

ГБОУ ВПО КемГМА МЗ РФ, Кемерово

Большая депрессия – распространенное психическое расстройство, которое является одной из наиболее частых причин нарушения трудоспособности . Это заболевание наблюдается во всех возрастных группах и поражает людей обоих полов в любом регионе мира. Опыт последних десятилетий показал, что перспективы изучения де-прессии связаны с ее нейробиологией.

О.А. Левада, Запорожская медицинская академия последипломного образования

Для объяснения патогенетических механизмов депрессии широко используется молекулярная гипотеза. Согласно последней, неблагоприятные факторы окружающей среды, такие как стресс, воздействуют на генетическую уязвимость, что вызывает дезадаптивные изменения в цепи нейротрансмиттеров, среди которых основную роль играют моноамины. В большинстве имеющихся достижений в лечении заболевания также реализованы воздействия на расшифрованные медиаторные механизмы патогенеза .

Одной из важнейших систем церебральной нейромедиации, задействованных в патогенезе депрессии, является серотониновая система. Данная нейротрансмиттерная система имеет длительную эволюционную историю и участвует в целом ряде поведенческих актов и эмоциональных проявлений . Она является объектом изучения значительного количества исследований, обзор которых представлен в настоящей публикации.

Для лучшего понимания интеграции серотониновой системы в мозговые процессы регуляции настроения следует в первую очередь рассмотреть имеющиеся данные о влиянии различных церебральных регионов на аффективные проявления. Так, исполнительные функции, включающие модулирование эмоционального поведения, которые могут иметь отношение к формированию когнитивных симптомов депрессии (депрессивное видение будущего), ассоциируются с гипоактивацией левой фронтальной коры .

Система эмоциональной памяти, включающая миндалину и гиппокамп, также вовлечена в реализацию проявлений депрессии. Депрессивные пациенты демонстрируют преимущественную сосредоточенность на негативных событиях прошлого . Дисфункцией стриатных кругов, осуществляющих психомоторные функции, можно объяснить моторные симптомы депрессии. Расстройства пищевого поведения и нарушения ряда других соматических функций свидетельствуют о вовлечении в процесс гипоталамуса и гипоталамо-гипофизарно-надпочечниковой оси.

Названные мозговые образования анатомически и функционально связаны между собой с помощью нейрональных кругов .

Во многочисленной экспериментальной литературе указывается значение путей, объединяющих в единую сеть фронтальный, паралимбический (вентральные отделы лобной коры, цингулярная извилина, островок, передний височный полюс), стриатный и стволовый регионы в осуществлении аффективных и мотивационных процессов . В свою очередь, с помощью методов функциональной нейровизуализации были обнаружены нарушения активности указанных выше мозговых областей у депрессивных больных . Развитию нейроанатомической модели депрессии способствовали данные о возникновении депрессивных нарушений при органических поражениях различных мозговых структур. Примером могут служить ишемические поражения левой лобной доли при постинсультной депрессии , а также поражение фронто-стриатных путей у пациентов с сосудистой депрессией и болезнью Паркинсона .

Серотониновая система головного мозга является составной частью описанных нейрональных сетей регуляции настроения. Серотонинергические нейроны сгруппированы в 9 ядрах ствола мозга. Большинство из них совпадает с медиально расположенным ядром шва . Серотонин (5-гидрокситриптамин ) синтезируется в указанных ядрах из триптофана.

В регулировании аффективных процессов принимают участие восходящие терминали серотонинергических ядер, которые заканчиваются в большом количестве мозговых структур: подкорковых образованиях (хвостатое ядро, скорлупа, переднее и медиальное ядра таламуса), промежуточном, обонятельном мозге и ряде образований, связанных с ретикулярной формацией, коре больших полушарий, миндалевидном теле и гипоталамусе. При этом в коре лимбической системы серотонина значительно больше, чем в неокортикальных регионах .

Важность нарушения звена синтеза серотонина для возникновения депрессии показана в работах, исследовавших эффекты ограничения приема триптофана с пищевыми продуктами. Гипотриптофановая диета приводила к появлению депрессивных симптомов у здоровых лиц и у пациентов с депрессией в стадии ремиссии. По данным позитронной эмиссионной томографии, у обследованных пациентов обнаруживали снижение активности пре- и орбитофронтальной коры, а также таламуса . Имеются убедительные доказательства генетической детерминированности синтеза серотонина в головном мозге. Известно, что в геноме человека имеется ген 5-НТТ, активность которого регулирует уровень вырабатываемого мозгом серотонина .

Серотонин выполняет свою физиологическую роль посредством воздействия на 5-НТ-рецепторы.

В настоящее время известно более 15 видов серотониновых рецепторов , однако не все они идентифицированы в головном мозге человека.

В центральной нервной системе (ЦНС) млекопитаю-щих обнаружены серотониновые 5-НТ 1 -рецепторы и пять их подтипов – A, B, D, E, F, представляющие собой протеины, содержащие 365-422 аминокислотных остатка. Посредством ингибиторных G-протеинов данные рецепторы сопряжены с аденилатциклазой, активность которой при их активации подавляется.

5-НТ 1А -рецепторы преимущественно локализованы в гиппокампе, миндалинах, прозрачной перегородке – структурах, принимающих участие в формировании настроения. Данные рецепторы ЦНС располагаются на пре- и постсинаптической мембране . Пресинаптические 5-НТ 1А -рецепторы по принципу обратной связи регулируют интенсивность высвобождения серотонина из пресинаптических нейрональных терминалей. Посредством стимуляции постсинаптических 5-НТ 1А -рецепторов реализуется ряд важных физиологических функций серотонина: регуляция настроения, обсессивно-компульсивные реакции, сексуальное поведение, контроль аппетита, терморегуляция, кардиоваскулярное регулирование. Именно этот вид рецепторов вовлечен в реализацию антиде-прессивного эффекта селективных ингибиторов обратного захвата серотонина, антидепрессивного и противотревожного эффекта буспирона.

Подтип 5-НТ 1D -рецепторов человека (функциональный аналог 5-НТ 1В -рецепторов крысы) локализован во фронтальных отделах коры, стриатуме, базальных ганглиях . Пресинаптические 5-НТ 1D -рецепторы играют роль ауторецепторов, через которые осуществляется отрицательная обратная связь между уровнем экстра- и интранейронального серотонина. Возможно, они играют также роль гетерорецепторов, посредством которых происходит управление выделением других нейротрансмиттеров, таких как дофамин, ацетилхолин, глутамат. Стимуляция же постсинаптических рецепторов данного подтипа в экспериментальных моделях вызывала длительную гиперактивность, антидепрессивное действие, снижение болевой чувствительности и аппетита, гипотермию.

Недавно было показано, что работа 5-НТ 1В/D -рецептора зависит от пептида Р11, принадлежащего к группе белков S100. Концентрация пептида Р11 в головном мозге у больных с депрессией оказалась низкой. Длительное антидепрессивное лечение увеличивает уровень данного пептида в мозговой ткани . Функция других подтипов 5-НТ 1 -рецепторов пока не установлена.

В ЦНС человека обнаружены 5-НТ 2 -рецепторы. Их семейство состоит из трех подтипов: 5-НТ 2А, 5-НТ 2В, 5-НТ 2С . В большей степени такие рецепторы представлены в пирамидных нейронах лобной коры, скорлупе, в меньшей – в гиппокампе и хвостатом ядре. Они являются звеном системы подкрепления мозга, низкая активность которой обусловливает возникновение ангедонии – одного из ключевых симптомов депрессии . 5-НТ 2А -рецепторы опосредуют анксиогенный эффект, учавствуют в формировании полового поведения, вовлечены в регуляцию сна. Уменьшение их количества отмечено при посмертных исследованиях у лиц, страдавших депрессией и покончивших жизнь самоубийством. Активация 5-НТ 2А -рецепторов вызывает увеличение концентрации дофамина в стриатуме. Современные атипичные антипсихотики обладают большой активностью в отношении данного подтипа, с чем связывают анти-депрессивный эффект этих препаратов . Антагонисты 5-НТ 2А -рецепторов увеличивают продолжительность медленноволнового сна, улучшая его качество, а агонисты сокращают фазу быстроволнового.

5-НТ 2С -рецепторы ЦНС в наибольшем количестве находятся в гиппокампе, коре головного мозга, полосатом теле, черной субстанции. Агонисты данных рецепторов вызывают анксиогенный и панический эффекты, нарушают сон. Блокада 5-НТ 2С -рецепторов является одним из механизмов лечения депрессии.

С этим связана эффективность антидепрессантов, являющихся антагонистами данных рецепторов (миансерин, имипрамин, мапротилин, амитриптилин, дезипрамин, агомелатин) . Антагонисты 5-НТ 2С -рецепторов улучшают сон и обладают анксиолитическим свойством. Последним частично объясняется противотревожное действие селективных ингибиторов обратного захвата серотонина.

5-НТ 3 -рецепторы располагаются в солитарном тракте, желатинозной субстанции, ядрах тройничного и блуждающего нервов, гиппокампе. Их центральные антагонисты оказывают анксиолитическое действие, повышают когнитивные способности, меняют чувствительность ноцицептивных нейронов, обладают противорвотным действием.

5-НТ 4 -рецепторы максимально представлены в областях, насыщенных дофаминергическими нейронами (базальные ядра, аккумбенс). Они локализуются на ГАМК-ергических и холинергических интернейронах и ГАМК-ергических проекциях в черную субстанцию. Агонисты этих рецепторов могут повышать активность дофаминергических систем, антагонисты – блокировать данный эффект. Есть данные об анксиолитическом эффекте антагонистов 5-НТ 4 -рецепторов .

5-НТ 6 -рецепторы располагаются в стриатуме, амигдале, гиппокампе, коре, обонятельной луковице. Различные антидепрессанты (кломипрамин, амитриптилин, нортриптилин, доксепин) имеют к ним высокое сродство и являются их антагонистами.

5-НТ 7 -рецепторы представлены в гипоталамусе, таламусе, стволе головного мозга. Они могут участвовать в организации циркадных ритмов посредством воздействия на супрахиазматические ядра. В будущем 5-НТ 6 - и 5-НТ 7 -рецепторы могут стать мишенью для моделирования депрессии .

Следующим уровнем нарушений серотониновой системы при депрессии является обратный захват 5-НТ из синаптической щели в пресинаптический нейрон, который осуществляется белком-переносчиком серотонина. Плотность данного белка в мозге депрессивных пациентов уменьшалась, что выявлялось с помощью методов функциональной нейровизуализации, а у умерших вследствие суицида – по данным посмертных гистохимических исследований .

Индивидуальные особенности оборота серотонина в ЦНС в числе прочих наследственных факторов зависят от эффектов гена-переносчика серотонина (5-НТТ). Данный ген расположен на 17-й хромосоме. В нем описано несколько полиморфных участков, в том числе инсерционно-делеционный полиморфизм (5-HTTLPR), обнаруженный в области промотора и представленный двумя аллельными вариантами – l (длинный) и s (короткий – с делецией). Этот полиморфизм является функциональным .

Ряд авторов обнаружили ассоциацию между полиморфизмом 5-HTTLPR и развитием депрессивных состояний в ответ на различные стрессоры . Лица, в генотипе которых имелся хотя бы один короткий аллель, демонстрировали более выраженные депрессивные симптомы, чаще имели диагноз депрессивного эпизода по классификации DSM-IV и сообщали о большем по сравнению с гомозиготами по длинному аллелю количестве суицидальных мыслей и попыток во время депрессивных эпизодов. Роль гена-переносчика серотонина в опосредовании связи между стрессовыми событиями жизни и последующим развитием депрессивных симптомов и физического дистресса была позднее подтверждена другими авторами . Кроме того, обнаружено, что здоровым людям – носителям короткого аллеля – в большей степени присущи повышенная эмоциональная реактивность и тревожность, то есть личностные особенности, которые рассматривают как предиспозиционные по отношению к аффективным расстройствам .

Описанные выше факты свидетельствуют о большом значении серотониновой системы для функционирования областей головного мозга, имеющих прямое отношение к регуляции аффективных процессов: фронтальных регионов, модулирующих эмоциональное поведение; лимбического региона, имеющего отношение к эмоциональным и когнитивным нарушениям при депрессии; фронто-стриатных структур, определяющих возникновение ангедонии; психомоторных расстройств. Отдельно следует выделить роль серотониновой системы в функционировании гипоталамического региона – важнейшего звена нейро-эндокринной, вегетативной, циркадной регуляции.

Серотониновая дисфункция непосредственно влияет на лимбико-гипоталамо-гипофизарно-надпочечниковую регуляцию у пациентов с депрессией . Депрессия ассоциируется с повышением суточной продукции адренокортикотропного гормона. Его гиперпродукция может объясняться повышением выработки кортикотропин-релизинг-фактора, синтез которого в норме лимитируется по механизму обратной связи уровнем кортизола в плазме крови.

Нарушение тормозных влияний кортизола на выработку кортикотропин-релизинг-фактора при депрессии связано с нарушением функции глюкокортикоидных и 5-НТ 1А -рецепторов. Результатом гиперактивности гипоталамо-гипофизарно-надпочечниковой оси у больных с депрессией является повышение уровня плазменного кортизола. Гиперкортизолемия, в свою очередь, ведет к снижению активности постсинаптических 5-НТ 1А -рецепторов, одного из главных проявлений серотониновой дисфункции. Таким образом, замыкается порочный круг.

Кортизол также потенцирует увеличение продукции адреналина. С этим связывают усиление активности симпатического звена сегментарного отдела вегетативной нервной системы. Данными механизмами обусловлены многие вегетативные симптомы депрессии.

Серотонинергическая система учавствует в регуляции цикла сон-бодрствование. Неудивительно, что одним из наиболее частых симптомов депрессии является нарушение сна. Считают, что главный генератор циркадных ритмов, локализующийся в супрахиазмальном ядре переднего гипоталамуса , получает информацию об уровне активности организма из ядер шва наряду со стимулами от межколенчатых ядер латерального коленчатого тела . Блокада 5-НТ 2С -рецепторов гипоталамического региона, которые становятся сверхчувствительными при депрессии, по данным Krauchi et al. (1997) и Leproult et al. (2005), может ресинхронизировать циркадный ритм и вызывать противодепрессивные эффекты .

Воздействия на серотониновую нейротрансмиссию реализованы в механизмах действия многих современных антидепрессантов и других психотропных препаратов. Для одних препаратов эти механизмы являются основным фармакодинамическим эффектом, для других – имеют дополнительное значение.

Ингибирование обратного захвата серотонина лежит в основе фармакодинамики большого количества антидепрессантов: селективных ингибиторов обратного захвата серотонина (СИОЗС), ингибиторов обратного захвата серотонина и норадреналина (ИОЗСН), трициклических антидепрессантов (ТЦА).

СИОЗС (циталопрам, сертралин, флуоксетин, флувоксамин, пароксетин) воздействуют на основной сайт белка-переносчика серотонина. Эсциталопрам блокирует как основной, так и аллостерический сайты данного протеина. Блокада белка-переносчика серотонина вызывает инициальное возрастание концентрации 5-НТ в соматодендритной зоне (но не в зоне аксональной терминали). Это, в свою очередь, вызывает снижение активности 5-НТ 1А -ауторецепторов. Поскольку их роль заключается в подавлении импульсов, приходящих к серотонинергическим нейронам, а также в подавлении синтеза и высвобождении серотонина, блокада рецепторов вызывает освобождение нейронов от подавляющих влияний и усиливает выделение серотонина из аксонального окончания в синаптическую щель. Возрастание концентрации серотонина в синаптической щели позволяет ему осуществлять свои влияния на постсинаптические рецепторы, в чем и состоит антидепрессивный эффект данной группы препаратов. Время, необходимое для снижения активности соматодендритных ауторецепторов 5-НТ 1А и результирующего высвобождения серотонина из аксональной терминали, объясняет 2-3-недельную задержку в наступлении эффекта СИОЗС . К главным преимуществам данной группы препаратов следует отнести их избирательное влияние на серотониновую систему, и отсутствие или минимальное воздействие на другие медиаторные системы головного мозга, что позволяет минимизировать побочные эффекты . Селективность препаратов в группе СИОЗС не является одинаковой. По мере снижения селективности СИОЗС можно расположить следующим образом: эсциталопрам, циталопрам, сертралин, флуоксетин, пароксетин.

ИОЗСН (венлафаксин, милнаципран, дулоксетин) подавляют обратный захват серотонина наряду с ингибированием реаптейка норадреналина. О значении норадреналиновых нарушений при депрессии речь пойдет в дальнейших публикациях. Блокада реаптейка серотонина – один из основных механизмов действия большинства ТЦА (кломипрамин, амитриптилин, доксепин, имипрамин, протриптилин).

К сожалению, взаимодействие данных препаратов с другими рецепторными системами (особенно с холин-ергическими и гистаминовыми), приводит к появлению большого количества побочных эффектов и отказу от использования ТЦА как антидепрессантов первой линии .

Активными в отношении 5-НТ 1А -рецепторов являются несколько препаратов. Пиндолол блокирует пресинаптические 5-НТ 1А -рецепторы и, следовательно, должен предотвращать нежелательный эффект обратной связи, выражающийся в повышении концентрации соматодендритного серотонина. Он показал возможность ускорения начала действия антидепрессантов . Буспирон, гепирон, азаперон, частичные антагонисты пресинаптических 5-НТ 1А -рецепторов и активаторы постсинаптических обладают антидепрессивным действием .

Блокирующим эффектом в отношении 5-НТ 2С -рецепторов обладают антидепрессанты различных химических групп: тетрациклические (миансерин), норадренергические и специфические серотонинергические (миртазапин), модуляторы серотонина (нефазодон, тразодон), агонист М 1 - и М 2 -рецепторов мелатонина и антагонист 5-НТ 2С -рецепторов (агомелатин). Антидепрессивная активность современных атипичных антипсихотиков также связана с блокадой 5-НТ 2С - и 5-НТ 2А -рецепторов . Кроме антидепрессивного действия, указанные антагонисты 5-НТ 2 -рецепторов синхронизируют нарушенные при депрессии биологические ритмы. В дополнение к ингибиции 5-НТ 2С -рецепторов, миртазапин, блокируя a2-рецепторы, стимулирует синтез серотонина .

Потенциально интересные возможности в терапии депрессии могут быть связаны с воздействием на 5-НТ 1В/D -, 5-НТ 6 - и 5-НТ 7 -рецепторы. Возникшие экспериментальные данные о фармакологической эффективности воздействия на эти мишени нуждаются в клинической валидизации .

Резюмируя представленные данные, мы полностью отдаем себе отчет, что была предпринята лишь попытка интегрировать современные сведения о нейробиологии серотониновой системы головного мозга и фармакотерапии депрессии, основанной на коррекции нарушений обмена серотонина. Результаты многих исследований остались за рамками настоящего обзора. Призмой, через которую проводился отбор данных для включения в работу, была возможность практического преломления полученных знаний. Ведь «нет ничего более практичного, чем хорошая теория». Выделение изолированной серотониновой дисфункции при депрессии также весьма условно. Очевидно, что деятельность данной нейромедиаторной системы необходимо рассматривать в структуре комплекса взаимосвязей расстройств норадрен-, дофамин-, ГАМК-, пептидергической и других медиаторных систем. Представленные сведения, являющиеся частью современной молекулярной гипотезы депрессии, необходимо дополнить данными о других биологических нарушениях, имеющих место при этом заболевании. Свое отражение они найдут в наших последующих публикациях. Очень надеемся, что предложенная информация о нейробиологических механизмах депрессивных расстройств будет полезной практикующим врачам.

Литература

  1. Kessler R.S. et al. Lifetime and 12-month prevalence of DSM-III-R psychiatric disorders in the United States: results from the National Comorbidity Survey // Arch Gen Psychiatry. – 1994. – Vol. 51. – P. 8-19.
  2. Murray C.J.L., Lopez A.D. Global burden of disease: a comprehensive assessment of mortality and morbidity from diseases, injuries and risk factors in 1990 and projects to 2020, Vol. I. – Harvard: World Health Organization, 1996.
  3. Обоснованное применение антидепрессантов: технический обзор данных, подготовленный Рабочей Группой CINP / Под ред. Т. Багай, Х. Грунце, Н. Сарториус: пер. с англ. – С-Пб., 2006. – 174 с.
  4. Stein D.J. Serotonergic neurocircuitry in mood and anxiety disorders // Martin Dunitz Ltd. – 2003. – 82 p.
  5. Mineka S., Watson D., Clark L.A. Comorbidity of anxiety and unipolar mood disorders // Annu Rev Psychol. – 1998. – Vol. 49. – P. 377-412.
  6. MacLeod A.K., Byrne A. Anxiety, depression, and the anticipation of future positive and negative experience // J Abnorm Psychol. – 1993. – Vol. 102. – P. 238-247.
  7. Damasio A.R. The somatic marker hypothesis and the possible function of the prefrontal cortex // Philos Trans R Sos. – 1996. – Vol. 54S. – P. 1413-1420.
  8. MacLean P.D. Psychosomatic disease and the visceral brain: recent developments bearing on the Papez theory of emotion // Psychosom Med. – 1949. – Vol. 11. – P. 338-353.
  9. Rolls E.T. A theory of emotion, and its application to understanding the neural basis of emotions // Cognition Emotion. – 1990. – Vol. 4. – P.161-190.
  10. Videbach P. PET measurements of brain glucose metabolism and blood flow in major depression: a critical review // Acta Psychiatr Scand. – 2000. – Vol. 101. – P. 11-20.
  11. Narushima K., Kosier J.T., Robinson R.G. A reappraisal of poststroke depression, intra- and inter-hemispheric lesion location using meta-analysis // J Neuropsychiatry Clin Neurosci. – 2003. – Vol. 15. – P. 422-430.
  12. Shimoda K., Robinson R.G. The relationship between poststroke depression and lesion location in long-term follow-up // Biol Psychiatry. – 1999. – Vol. 45. – P. 187-192.
  13. Camus V., Kraehenbuhl H., Preisig M. et al. Geriatric depression and vascular diseases: what are the links? // J Affect Disord. – 2004. – Vol. 81, N 1. – P. 1-16.
  14. Firbank M.J., Lloyd A.J., Ferrier N., O"Brien J.T. A volumetric study of MRI signal hyperintensities in late-life depression // Am J Geriatr Psychiatry. – 2004. – Vol. 12, N 6. – P. 606-612.
  15. Seki T., Awata S., Koizumi Y. et al. Association between depressive symptoms and cerebrovascular lesions on MRI in community-dwelling elderly individuals // Nippon Ronen Igakkai Zasshi. – 2006. – Vol. 43, N 1. – P. 102-107.
  16. Dahlstrom A., Fuxe K. Evidence for the existence of monoamine neurons in the central nervous system // Acta Physiol Scand. – 1965. – Vol. 64. – P. 1-85.
  17. Бархатова В.П. Нейротрансмиттеры и экстрапирамидная патология. – М.: Медицина, 1988.
  18. Громова Е.А. Серотонин и его роль в организме. – М.: Медицина, 1966.
  19. Луценко Н.Г., Суворов Н.Н. Регуляция биосинтеза серотонина в центральной нервной системе // Успехи соврем. биол. – 1982. – Т. 94. – С. 243-251.
  20. Bremmer J.D., Innis R.B., Salomon R.M. et al. Positron emission tomography measurement of cerebral metabolic correlates of tryptophan depletion-induced depressive relapse // Arch Gen Psychiatry. – 1997. – Vol. 54. – P. 364-374.
  21. Конысова А.Ж. Серотониновый обмен при рассеянном склерозе и ретробульбарном неврите (клинико-биохимическое исследование): Дисс. …канд. мед. наук. М., 1995.
  22. Сергеев П.В. Рецепторы. – Волгоград, 1999.
  23. Cox C., Cohen J. 5-HT2B receptor signaling in the rat stomach fundus: dependence on calcium influx, calcium release and protein kinase C // Behav. Brain Res. – 1996. – Vol. 73. – P. 289.
  24. Fox S.H., Brotchie J.M. Anti-parkinsonian action of 5-HT2C receptor antagonism in the substantia nigra pars reticulata // Mov. Disord. - 1997. - Vol. 12, Suppl. 1. – P. 116.
  25. Hanssen E., Nilsson A., Ericsson P. Heterogeneity among astrocytes evaluated biochemical parameters // Adv. Biosci. – 1986. – Vol. 61. – P. 235-241.
  26. Holstege J.S., Knypers H.G. Brainstem projections to spinal motoneurons: an update commentary // Neuro. Sci. – 1987. – Vol. 23. – P. 809-821.
  27. Blier P., Ward N.M. Is the a role for 5HT-1A-agonists in the treatment of depression // Biol. Psychiat. – 2003. – Vol. 53. – P. 193-203.
  28. Connor J.D. et al. Use of GR 55562, a selective 5-HT1D antagonist, to investigate 5-HT1D receptor subtypes mediating cerebral vasoconstriction // Cephalgia. – 1995. – Vol. 15, Suppl. 14. – P. 99.
  29. Choi C, Maroteaux J. Immunohistochemical localization of the serotonin 5-HT2B receptor in mouse gut, cardiovascular system, and brain // FEBS Lett. – 1996. – Vol. 391. – P. 45.
  30. Martin G.R. et al. 5-HT2C receptor agonists and antagonists in animal models of anxiety // Eur. Neuropharmacol. – 1995. – Vol. 5. – P. 209.
  31. Мисюк Н.С. и соавт. Материалы к обмену серотонина при тормозных состояниях головного мозга. – Минск, 1965.
  32. Willner P. Validity, reliability and utility of chronic mild stress model of depression: a 10 years review and evaluation // Psychopharmacology. – 1997. – Vol. 134. – P. 319-329.
  33. Papp M., Cruca P., Boyer P.-A., Mocaer E. Effect of agomelatine in the chronic mild stress model of depression in the rat // Neuropsychopharmacology. – 2003. – Vol. 28. – P. 694-703.
  34. Голубев В.Л., Левин Я.И., Вейн А.М. Болезнь Паркинсона и синдром паркинсонизма. – М.: МЕДпресс, 1999.
Полный список литературы, включающий 51 пункт, находится в редакции.