Повышение надёжности и эффективности системы бюджетирования в компании ТОО «SIKA KAZAKHSTAN»

Предприятия, занимающиеся производством строительных смесей и бетонных добавок, играют важную роль в экономике страны, поскольку выполняют функцию производства и обеспечения государства и промышленных организаций ресурсами для всего строительства, необходимыми для их нормального функционирования. Если в Казахстане в последние 5 лет наблюдается снижение индекса строительства на 2-3%, то Алматинская область демонстрирует устойчивые темпы роста производства, сухих и жидких смесей бетонных добавок: индекс в 2014 г. по отношению к 2013 г. составил 103%. Вероятно, рост обусловлен, главным образом, увеличением цены на производимые и импортируемые товары. В сущности, изношенность основных фондов, недостаточность ресурсов и использование устаревших технологий производства позволяют говорить о кризисном состоянии мощностей, занимающихся производством сухих и жидких смесей Алматинской области.

С конца 2012 года, а именно с момента образования ТОО “Sika Kazakhstan» ситуация стала меняться в лучшую сторону, но о полном решении всех проблем говорить рано.

Существуют и специфические особенности в функционировании этих предприятий: сезонный характер доходов при реализации некоторых видов продукции (сторительства) при условно-постоянном характере затрат; необходимость учета величины пиковой нагрузки оборудования; наличие определенных категорий компании, имеющих льготы по оплате за задолженности, компенсации по которым происходят с отставанием во времени.

Естественно, что эта специфика присуща и ТОО «Sika Kazakhstan».

В настоящее время следует признать, что высший менеджмент признаёт необходимость повышения надёжности и эффективности существующей системы бюджетирования в ТОО «Sika Kazakhstan». Таким образом, первый шаг в совершенствовании данной системы был сделан.

Решение вопроса, каким путём реформировать систему, назрело по ходу деятельности: стало ясно - дальнейшее функционирование системы бюджетирования на основе системы таблиц MS Excel недопустимо из-за существенных недостатков данного подхода. Было принято решение провести автоматизацию данного процесса.

Автоматизация потребует много времени и ресурсов, но ожидается, что эффект от внедрения программных продуктов перекроет все затраты.

Автоматизация системы бюджетирования позволит четко и формализованно определить основные факторы, характеризующие результаты деятельности, их детализацию для каждого уровня управления и конкретные задачи для руководителей структурных подразделений, обеспечивающих их выполнение.

Автоматизация бюджетирования, сможет обеспечить лучшую координацию хозяйственной деятельности, повысить управляемость и адаптивность предприятий, занимающихся производством и перепродажи, к изменениям во внутренней и внешней среде. Она способна снизить возможность злоупотреблений и ошибок в системе планирования, обеспечить взаимосвязь различных аспектов хозяйственной деятельности, сформировать единое видение планов предприятия и возникающих в процессе их осуществления проблем, обеспечить более ответственный подход специалистов к принятию решений и лучшую мотивацию их деятельности.

Для постановки системы бюджетирования необходимым элементом является наличие на предприятии основных внутренних регламентирующих организационно-распорядительных документов и формализованных процессов управления (правил, описание процедур и т.д.). Необходимость регламентации вызвана тем, что формирование информации о производстве как бы повторяет ход самого производственного процесса и предопределено движением материальных ресурсов по стадиям технологического процесса и нарастанием трудовых затрат по мере обработки исходных материалов. Организационная структура предприятия фактически обеспечивает согласованность отдельных видов хозяйственной деятельности предприятия по выполнению основных задач и целей. Поэтому организационная и производственная структура предприятия, его внутрихозяйственный механизм являются базисом при реформировании планирования и внедрении автоматизированного бюджетирования .

Это было принято во внимание менеджментом ТОО «Sika Kazakhstan» и в настоящее время уже осуществляются процедуры по разработке и согласованию регламента для автоматизированной системы бюджетирования, который придёт на смену существующему.

Преимущества автоматизации системы бюджетирования заключаются в следующем :

  • 1. Значительно повышается качество работы по реализации стратегии, так как стратегические цели формализованы и доведены до каждого отдела.
  • 2. Появляется возможность более объективной оценки вклада каждого ЦФО за счет обоснованности планов и стимулирования их четкого выполнения.
  • 3. Автоматизированная система бюджетирования обеспечивает произведение оценки эффективности разработанных мероприятий на протяжении всего управленческого цикла бюджетирования.

Таким образом, руководство компании стоит на верном пути, отдавая предпочтение стратегии реагирования на вызовы времени. Принимаемые меры позволят в будущем компании достигать стратегические цели и развивать бизнес. Но весьма важно не «сбиться» с намеченного пути, а это в процессе решения такой задачи как повышение надёжности и эффективности системы бюджетирования компании, очень вероятно.

Для недопущения просчётов менеджменту компании следует расширить своё сотрудничество с более широким кругом фирм, предлагающих услуги по автоматизации систем бюджетирования, чтобы иметь возможность выбора наиболее оптимального варианта платформы.

Кроме этого, было бы целесообразным привлечение независимых специалистов в качестве консультантов при выборе системы, учитывающей специфику деятельности ТОО «Sika Kazakhstan».

В целом, принимаемые в компании меры позволят реализовать намеченные цели. Но при игнорировании вышеуказанных аспектов вектор процесса может сместиться, что всё же не позволит получить полную отдачу от внедрённой системы.

На правах рукописи

ПОВЫШЕНИЕ НАДЁЖНОСТИ И ЭФФЕКТИВНОСТИ

ЛАМП БЕГУЩЕЙ ВОЛНЫ, ПРИМЕНЯЕМЫХ В

ВЫХОДНЫХ УСИЛИТЕЛЯХ СПУТНИКОВ СВЯЗИ

Ученый секретарь

диссертационного совета

ОБЩАЯ ХАРАКТЕРИСТИКА ДИССЕРТАЦИОННОЙ РАБОТЫ

Актуальность разрабатываемой проблемы.

В бортовой аппаратуре космических аппаратов различного назначения широко используются широкополосные лампы бегущей волны (ЛБВ) О - типа со спиральными замедляющими системами (ЗС). Надёжность, электрические и массогабаритные параметры этих ЛБВ в значительной мере определяют качество бортовых радиопередатчиков.

8. , Шалаев свидетельство № 000 на изобретение "Лампа бегущей волны". Зарегистрировано в Государственном реестре изобретений СССР 15 августа 1989 г. Заявка № 000. Приоритет изобретения от 01.01.01 г.

9. , Шалаев свидетельство № 000 на изобретение "Лампа бегущей волны". Зарегистрировано в Государственном реестре изобретений СССР 3 января 1992 г. Заявка № 000. Приоритет изобретения от 4 августа 1989 г.

Публикации в других изданиях

10. Шалаев П. Д. Результаты экспериментальных исследований спиральной ЛБВ с высоким электронным КПД в двухчастотном режиме работы / , //9-я Международная научно-техническая конференция Актуальные проблемы электронного приборостроения. АПЭП-2010" Саратов. Изд. СГТУ. 22 – 23 сентября 2010 . С. 157 – 162.

11. Шалаев П. Д. Результаты исследования амплитудных характеристик спиральной ЛБВ с высоким КПД электроники / , // Материалы научно-технической конференции "Электронная и вакуумная техника: Приборы и устройства. Технология. Материалы". Саратов. ОАО "НПП "Контакт". Изд. Саратовского ун-та. 24 – 25 сентября 2009. Выпуск 3. С

12. Шалаев П. Д. Технология и обеспечение качества ЛБВ для бортовой аппаратуры космических платформ. / , // Материалы научно-технической конференции "Электронные приборы и устройства СВЧ". .Саратов. ФГУП "НПП "Алмаз". Изд. Саратовского ун-та. 28 – 30 августа 2007. С.

13. Шалаев П. Д. Об анализе направлений повышения КПД ЛБВ / Шалаев П. Д // Материалы международной научно-технической конференции "Актуальные проблемы электронного приборостроения. АПЭП-2006". Саратов. Изд. СГТУ. 20 – 21 сентября 2006. С. 120 – 127.

14. Об одной возможности оценки конструктивных ограничений электронного КПД спиральных ЛБВ / Шалаев П. Д. // Материалы международной научно-технической конференции " Радиотехника и связь". Саратов. Изд. СГТУ. 18 – 20 мая 2005 . С. 372 – 377.

15. Шалаев П. Д. О корреляции флуктуаций расчётных параметров многоступенчатых коллекторных систем с погрешностями численной модели/ , // Материалы международной научно-технической конференции "Актуальные проблемы электронного приборостроения. АПЭП-2000". Саратов. Изд-во СГТУ. 2000. С. 159 – 164.

16. Шалаев П. Д. Результаты разработки образца ЛБВ средней мощности в трёхсантиметровом диапазоне с КПД до 69%. / // Материалы научно-технической конференции "Перспективы развития электроники и вакуумной техники на период 2001 – 2006 гг." Саратов. ГНПП "Контакт". Изд. Саратовского ун-та. 22 – 23 февраля 2001. С 6

17. Шалаев П. Д. Малогабаритный усилитель СВЧ-мощности Х-диапазона частот с большим КПД и повышенной линейностью характеристик / , // Материалы научно-технической конференции "Электронные приборы и устройства нового поколения". Саратов. Изд. Саратовского ун-та. 14 – 15 февраля 2002. С.

18. Шалаев П. Д. Исследование амплитудно-фазовых характеристик спиральных ЛБВ средней мощности с высоким электронным КПД / , // Материалы научно-технической конференции "Перспективные направления развития электронного приборостроения". Саратов. ФГУП "НПП "Контакт". Изд. Саратовского ун-та. 18 – 19 февраля 2003. С

19. Shalaev P. D. High-Perveance Electron Optic System with Low-Voltage Non-Gridded Control / Babanov G. N., Morev S. P., Shalaev P. D.// Proceeding of the Fourth International Vacuum Electron Sources Conference. Saratov, Russia, July 15-19, 2002. Saratov: Publishing House of the State Educational & Scientific Center “College”, 2002. P.315-316.

20. Шалаев П. Д. Новые технологии в ЛБВ для бортовых и наземных систем спутниковой связи / , // Материалы научно-практической конференции РАСУ "Новые технологии в радиоэлектронике и системах управления". Саратов. ФГУП "НПП "Алмаз". Изд. Саратовского ун-та. 22 – 25 сентября 2003 . С. 274 – 286.

_____________________________

1 Кац в лампах с бегущей волной. Часть 1. Лампа с бегущей волной О-типа / , // Изд. СГУ. 1964. С. 143.

Основ­ными источниками экономической эффективности в сфере эксплуа­тации являются повышение надежности техники, повышение ее производительности, снижение сопутствующих капитальных затрат, снижение затрат эксплуатационных материалов, затрат на техни­ческое обслуживание и ремонт.

Все перечисленные источники могут проявляться самостоятель­но, но чаще всего взаимосвязаны между собой. Так, повышение надежности техники увеличивает ее производительность, хотя по­следняя после стандартизации может возрасти и в силу других причин - изменения конструкции, автоматизации отдельных эле­ментов, использования прогрессивных материалов и пр.

Учет экономического эффекта, возникающего в результате по­вышения надежности техники, является исключительно сложным процессом. Для его раскрытия необходимо более детально рас­смотреть составляющие его элементы.

Надежность техники является комплексным показателем и ха­рактеризуется такими свойствами изделий, как безотказность, дол­говечность, ремонтопригодность и сохраняемость. По каждому из этих свойств установлен ряд показателей, характеризующих на­дежность изделия и регламентированных в НТД на продукцию и, в частности, в государственных стандартах. Основные показатели надежности техники отражены в табл. (3.4).

В целом повышение надежности меняет производительность техники, ее срок службы, эксплуатационные затраты, размер ка­питаловложений, т. е. все составляющие, используемые при расчете экономического эффекта от использования новой техники. Однако каждое из отдельных свойств надежности вносит свой вклад в по­лучение народнохозяйственного эффекта, и поэтому методы его расчета имеют свою специфику.

Экономический эффект от повышения безотказности определя­ется по формуле:

где C 1 и C 2 - себестоимость единицы продукции до и после повы­шения надежности; K 1 и K 2 - удельные капитальные вложения в производственные фонды до и после повышения надежности; Е Н - нормативный коэффициент экономической эффективно­сти; В 1 и В 2 - годовые объемы продукции (работы), производимой одной машиной до и после повышения надежности; и- годовые эксплуатационные издержки потребителя до и после повышения надежности в расчете на объем продукции (работы), производимой машиной с повышенной надежностью;и- сопутствующие капитальные вложения потребителя (без учета стоимости машины) до и после повышения надежности в расчете на объем продукции (работы), производимой машиной с повышен­ной надежностью;Р 2 -доля отчислений от балансовой стоимости на полное восстановление (реновацию) машины с повышенной надежностью;А 2 - годовой выпуск машин повышенной надежно­сти.

Таблица 3.4

Комплексный подход к изучению надежности

Основные свойства надежности

Характеристика свойств надеж­ности единичного изделия

Основные показатели

надежности

изме­рения

Безотказность

Наработка на от­каз

Наработка до от­каза

Установленная безотказ­ная наработка

Средняя наработка на отказ

Долговечность

Срок службы

Установленный ресурс

Средний ресурс.

Уста­новленный срок службы. Средний срок службы

Часы работы, циклы, км.пробега

Ремонтопри­годность

восстанов­ления

Среднее время восста­новления.

Удельная трудоемкость

восстановления

Месяцы, годы,

Сохраняемость

Срок сохраняемо­сти

Установленный срок со­храняемости.

Средний срок сохраняе­мости

В некоторых случаях коэффициент учета роста производитель­ности (B 2 /B 1) может быть представлен в виде:

где Т 1 и Т 2 - время работы оборудования до и после повышения надежности;

где δ - коэффициент загрузки оборудования; Ф об - эффективный годовой фонд времени.

Специфика расчетов экономической эффективности повышения надежности по каждому из его свойств проявляется не только в методе расчета самого эффекта, но и необходимых затрат, связан­ных с повышением того или иного показателя. Поэтому по каждо­му из описываемых элементов надежности необходимо рассмот­реть методы расчета затрат на достижение повышенных показа­телей надежности.

Затраты на повышение безотказности и методы их расчета можно представить в следующем виде:

единовременные затраты, включающие проведение проектных работ, увеличение затрат на установку более безотказных комп­лектующих деталей, узлов, агрегатов, осуществление резервирова­ния отдельных узлов и механизмов, определяются по формуле:

(3.59)

где К ПР - стоимость проектных работ; - увеличение стоимости отдельных деталей, узлов, агрегатов;п - количество деталей,узлов и агрегатов, подлежащих модернизации; - стоимость дополнительных устройств и механизмов;m

Разница в текущих затратах , складывающихся за счет более частого проведения профилактических осмотров, более тщатель­ного диагностирования технического состояния деталей, узлов, агрегатов и машины в целом, определяется по формуле:

(3.60)

где и-годовые эксплуатационные издержки до и после повышения надежности;B 2 /В 1 - коэффициент учета роста произ­водительности.

Экономический эффект от повышения долговечности определя­ется по формуле:

где С 1 и С 2 - себестоимость единицы продукции до и после повы­шения долговечности; K 1 и К 2 - удельные капитальные вложения в производственные фонды до и после повышения долговечности; Е - нормативный коэффициент экономической эффективно­сти; Р 1 и P 2 - доли отчислений от балансовой стоимости на полное восстановление (реновацию) до и после повышения долговечности; и- годовые эксплуатационные издержки до и после повы­шения долговечности;и- сопутствующие капитальные вложения потребителя до и после повышения долговечности;А 2 - годовой выпуск продукции с повышенной долговечностью.

Затраты на повышение долговечности также следует разделить на единовременные и текущие затраты.

Единовременные затраты, включающие стоимость проектных работ, увеличение стоимости отдельных деталей, узлов, агрегатов, введение дополнительных узлов и механизмов, определяются по формуле:

(3.62)

где К ПР - стоимость проектных работ; - увеличение стоимости отдельных деталей, узлов, агрегатов;- стоимость дополнительных устройств и механизмов;п - количество деталей, узлов и агрегатов, подлежащих модернизации; m - количество допол­нительных устройств и механизмов.

Текущие затраты, складывающиеся за счет более частого про­ведения профилактических осмотров и ремонтов, более тщатель­ного диагностирования технического состояния деталей, узлов, аг­регатов и машины в целом, определяются по формуле:

где Р 1 i и Р 2 j - количество осмотров и ремонтов одного видаi -го или j -го в год; З 1 и З 2 - затраты на проведение осмотров и ремонтов каждого вида; п и m - количество видов осмотров и ремонтов до и после повышения долговечности.

Экономическая эффективность повышения ремонтопригодности определяется по формуле:

где C 1 и С 2 - себестоимость единицы продукции до и после повы­шения ремонтопригодности; K 1 и К 2 - удельные капитальные вло­жения в производственные фонды до и после повышения ремонто­пригодности; Е Н - нормативный коэффициент экономической эффективности; B 1 и В 2 - годовой объем продукции (работы), про­изводимой машиной с повышенной ремонтопригодностью; Р 2 - до­ля отчислений от балансовой стоимости на полное восстановление (реновацию) машины с повышенной ремонтопригодностью; и- годовые эксплуатационные издержки до и после повыше­ния ремонтопригодности;и- сопутствующие капитальные вложения потребителя до и после повышения ремонтопригодности;А 2 -годовой выпуск продукции с повышенной ремонтопригод­ностью.

Затраты на повышение ремонтопригодности разделяются на единовременные, включающие стоимость проектных работ и затра­ты на разработку ремонтной документации, и текущие, связанные с увеличением стоимости отдельных узлов и механизмов, изготов­ленных с учетом требований повышения их приспособленности к техническому обслуживанию и ремонту. В результате повышения ремонтопригодности достигается:

уменьшение годовых эксплуатационных издержек:

увеличение коэффициента роста производительности:

И, наконец, последними являются показатели сохраняемости изделий. Источниками экономии в связи с повышением сохраняе­мости являются: уменьшение затрат на монтаж; сокращение сро­ков освоения проектной мощности.

Экономический эффект от повышения сохраняемости определя­ется по формуле:

где С 1 и С 2 - себестоимость единицы продукции до и после по­вышения сохраняемости; К 1 и К 2 - удельные капитальные вложе­ния в производственные фонды до и после повышения сохраняемости; Е Н - нормативный коэффициент экономической эф­фективности; и- годовые эксплуатационные издержки до и после повышения сохраняемости;и- сопутствующие капитальные вложения потребителя до и после повышения сохра­няемости;Р 2 - доля отчислений от балансовой стоимости на пол­ное восстановление (реновацию) машины с повышенной сохраня­емостью; А 2 - годовой выпуск продукции с повышенной сохраня­емостью.

Затраты на повышение сохраняемости образуются за счет:

увеличения стоимости проектных работ, в результате чего вы­рабатываются более совершенные конструктивные решения;

использования более эффективных методов консервации и упа­ковки;

улучшения условий хранения.

10.04.2018

Источник: Журнал «PROнефть»

Management of reliability and integrity of equipment is an important tool for enhancing business efficiency

УДК 338.45:622.276

В.Р. Амиров
ПАО «Газпром нефть»

Ключевые слова: надежность, целостность, оборудование, риск, затраты, эффективность, бюджет, планирова- ние, производственная безопасность, система управления операционной деятельностью (СУОД)

V.R. Amirov
Gazprom Neft PJSC, RF, Saint-Petersburg

The article is devoted to improvement of operational efficiency of oil and gas fields and examines one of the key direc- tions of the operational management system (OMS). This direction is the management of reliability and integrity of equipment – implemented by the Deming cycle. A prerequisite of effective management of reliability and integrity is a correct assessment of the current condition of the asset through the risk assessment and registration costs and damages. The risk-based approach allows for comparable levels of direct costs for management of reliability and in- tegrity, to improve the total economic result (direct costs + damage) while reducing the number of failures. In conclu- sion, the assessment of the current state of management of reliability and integrity in Upstream Division of GPN

Keywords: reliability, integrity, equipment, risk, cost, efficiency, budget, planning, production safety, operational management system (OMS)

DOI : 10.24887/2587-7399-2018-1-10-15

Введение

Задачей программы «Эталон» (система управления операционной деятельностью (СУОД)) ПАО «Газпром нефть» является обеспечение максимальной операционной эффективности компании за счет надежности и безопасности производственной деятельности и вовлечения всех сотрудников в процесс непрерывных улучшений. Управление надежностью и целостностью оборудования (УНЦО) представляет собой комплекс мероприятий, обеспечивающий бесперебойную работу нефтепромыслового оборудования на протяжении всего периода эксплуатации. Важность этого направления производственной деятельности отражена в его выделении в отдельный элемент СУОД.

Прямые затраты и совокупный экономический результат

В условиях объективного ухудшения условий эксплуатации в нефтегазодобывающей отрасли (истощение месторождений, увеличение обводненности продукции скважин и др.) целесообразно оценить «свежим взглядом» структуру затрат на поддержание текущей деятельности активов. Значительную долю (до 20) занимают затраты на УНЦО. Они распределены по различным статьям бюджета актива и могут быть разделены по следующим направлениям (прямые затраты):

1.1. текущий ремонт оборудования;

1.2. капитальный ремонт (или замена) оборудования (частично осуществляется за счет капитальных вложений);

1.3. диагностика состояния оборудования (включая экспертизу промышленной безопасности оборудования с истекшим сроком эксплуатации, мероприятия по коррозионному мониторингу и др.);

1.4. защита оборудования (включая выбор материалов, нанесение защитных покрытий, ингибирование коррозии и др.).

Кроме того, в процессе операционной деятельности возникают дополнительные затраты на УНЦО, которые также влияют на себестоимость добычи нефти:

2.1. затраты на устранение отказов оборудования и ликвидацию последствий этих отказов;

2.2. штрафы и платежи, связанные с нарушением целостности и отказами оборудования.

Третья группа затрат, а точнее, потерь, которые влияют на финансовый результат деятельности актива за отчетный период включает:

3.1. потери продукции, связанные с нарушением целостности и отказами оборудования. Эти три группы затрат актива по-разному соотносятся с рисками нарушения целостности оборудования. Затраты 1.1., 1.2., 1.4. снижают эти риски (как вероятность, так и последствия), затраты 2.1., 2.2., 3.1. возникают вследствие реализовавшихся рисков. Затраты 1.3. обеспечивают оценку данных рисков и не влияют на величину риска. Эффективность УНЦО оценивается по совокупному экономическому результату, который представляет собой сумму всех вышеперечисленных затрат. Управление совокупным экономическим результатом составляет основу УНЦО и включает: планирование, выполнение, контроль выполнения и оценку эффективности и актуализацию подхода к УНЦО.

Риск и ущерб

Стоимостная оценка риска и ущерб – величины, которые характеризуют прогнозный и фактический результат деятельности, связанной с УНЦО.

Риск нарушения целостности – прогнозируемая величина ущерба от отказов и нарушения целостности оборудования за планируемый период. Качество оценки данного риска определяется сравнением этой оценки с суммой понесенного ущерба в течение данного периода с учетом предотвращенного ущерба. Поскольку в настоящее время величина ущерба от отказов и нарушения целостности оборудования учитывается неполностью, то и качество оценки соответствующего риска определить непросто из-за отсутствия базы сравнения.

В этих условиях обоснованием деятельности, связанной УНЦО, может быть только уверенность в том, что затраты (1.1., 1.2., 1.3., 1.4.) существенно меньше ущерба, который они должны предотвратить. Для новых растущих активов такое предположение, как правило, верно, но по мере снижения маржинальности

бизнеса, ставится вопрос обоснованности этих затрат.

В общем случае деятельность, связанная с УНЦО имеет экономический смысл, если

где Зi – затраты по направлениям 1.1., 1.2., 1.3., 1.4. за отчетный период; У – ущерб от отказов и нарушения целостности оборудования в течение отчетного периода (2.1., 2.2., 3.1.); Упр – предотвращенный ущерб в течение отчетного периода.

Для того, чтобы экономически обосновать затраты на УНЦО, необходим учет затрат 1.1., 1.2., 1.3., 1.4. за отчетный период, ущерба от отказов и нарушения целостности оборудования (затраты 2.1., 2.2., 3.1.), а также предотвращенного ущерба в течение этого периода.

Указанные задачи решаются в рамках организации соответствующей отчетности: о прямых затратах на УНЦО, об ущербе от отказов оборудования и нарушения целостности оборудования, об эффективности прямых затрат на УНЦО.

Риск-ориентированный подход к управлению надежностью и целостностью оборудования

В настоящее время в нефтегазодобывающей отрасли используются в основном два подхода к УНЦО.

1. Ремонт и замена оборудования проводятся в минимальном объеме по факту отказа. Диагностика оборудования выполняется в соответствии с требованиями законодательства (техническое освидетельствование по нормам правил безопасности, экспертиза промышленной безопасности для оборудования с истекшим сроком эксплуатации и др.). Совокупный экономический результат этого подхода представлен на рисунке, а в виде ромба красного цвета и далек от оптимального по числу предотвращенных отказов (кружок зеленого цвета). Этот подход характерен для зрелых активов на поздней стадии разработки месторождений со значительными операционными затратами.

2. Ремонт и замена оборудования проводятся в соответствии с нормативными сроками, рекомендациями изготовителя с учетом результатов технического освидетельствования. Диагностика оборудования выполняется в соответствии с требованиями законодательства (техническое освидетельствование по нормам правил безопасности, экспертиза промышленной безопасности для оборудования с истекшим сроком эксплуатации и др.).

Совокупный экономический результат реализации подходов 1 и 2 (а) и риск-ориентированного подхода (б)

Этот подход характерен для развивающихся активов с растущей добычей. Совокупный экономический результат такого подхода показан на рисунке, а ромбом желтого цвета и также не оптимален. Кроме того, сумма прямых затрат на УНЦО в этом случае больше ущерба и для выполнения указанного выше условия необходимо оценивать сумму предотвращенного ущерба, что, как уже отмечалось, довольно сложно.

Альтернативным является подход, основанный на оценке риска отказов и нарушения целостности оборудования (RBI – Risk Based Inspection, RCM – Reliability Centered Maintenance), который называют риск-ориентированным. Результат реализации этого подхода представлен на рисунке, б. Следует обратить внимание, что при таком подходе форма кривой, характеризующей ущерб от отказов, отличается от приведенной на рисунке, а. Это связано с тем, что при риск-ориентированном подходе затраты в первую очередь направляются на предотвращение отказов с наиболее негативными последствиями (ущерб людям, окружающей среде, репутации компании, значительные производственные потери), т.е. неприемлемых рисков. На отрезке кривой, соответствующем 70 – 100 предотвращенных отказов, остаются отказы с незначительными последствиями. Сравнение кривых на рисунке, а, б показывает, что рискориентированный подход позволяет при сравнимых уровнях прямых затрат на УНЦО улучшить совокупный экономический результат при одновременном снижении числа отказов. Оптимальный совокупный экономический результат показан на рисунке, б зеленым кружком. Особенно эффективен этот подход в компаниях с разными активами (новыми, развивающимися, зрелыми).

Для использования риск-ориентированного подхода к УНЦО необходимо решить две задачи.

1. Выполнить качественную оценку рисков нарушения целостности различных видов оборудования на планируемый период, включающую разработку и внедрение модели расчета:

– вероятности отказа оборудования в зависимости от ключевых (внутренних и внешних)

факторов влияния, к которым относятся срок службы, результаты технического освидетельствования, состояние защищенности оборудования, материал изготовления, условия и история его эксплуатации и др.;

– последствий отказа оборудования в зависимости от его производительности, рабочих параметров, стоимости, места установки (по отношению к другому оборудованию, местам нахождения персонала, населенным пунктам, водоохранным зонам и др.), временного интервала реагирования на критические отклонения рабочих параметров, состояния ремонтопригодности оборудования, состояния систем внешней защиты и реагирования и др.

2. Сформировать автоматизированную отчетность за определенный период

– о прямых затратах на УНЦО по видам оборудования (1.1, 1.2, 1.3, 1.4);

– о реализовавшихся рисках отказов и нарушения целостности оборудования (2.1, 2.2, 3.1).

Представленный подход применяется для кратко-, среднеи долгосрочного планирования деятельности, связанной с УНЦО.

Текущее состояние и перспективы унцо блока разведки и добычи ПАО «Газпром нефть»

Для решения первой задачи в Дирекции по добыче (ДД) Блока Разведки и Добычи (БРД) ПАО «Газпром нефть» разработана и реализуется программа надежности и целостности нефтепромыслового оборудования (НПО), включающая:

– оценку риска нарушения целостности НПО через заполнение и анализ оценочных листов по видам НПО;

– разработку на основе этой оценки методологии планирования затрат на УНЦ НПО;

– формирование подразделений по УНЦО в дочерних обществах;

– оценку эффективности реализации программы технического обслуживания и ремонта НПО.

В Дирекции по газу и энергетике (ДГиЭ) в настоящее время реализуется пилотный проект «Создание единой системы планирования и контроля планово-предупредительного ремонта энергооборудования», основными задачами которого являются снижение числа ремонтов и затрат на них за счет определения вида и объема ремонта на основании оценки технического состояния энергооборудования (RBI) и баланса между требуемым уровнем надежности и затратами на его поддержание (RCM). Кроме того, в ближайшее время ДГиЭ планирует начать реализацию пилотного проекта «Испытание систем предиктивной аналитики на основном оборудовании электростанций и объектов транспорта газа», задача которого – повышение надежности работы, сокращение времени внеплановых простоев оборудования путем предупреждения и устранения неисправностей на ранней стадии (RBI).

Вторую задачу в части оценки ущерба предполагается решить с помощью внедрения разработанного в ПАО «Газпром нефть» методического документа МД-16.10-05 «Методика финансовой оценки ущерба от происшествий в области производственной безопасности» путем выделения из существующих информационных систем происшествий по КТ-55, которые классифицируются как нарушения целостности оборудования (все отказы, порывы трубопроводов и др.).

Организация отчетности о прямых затратах на УНЦО должна осуществляться на основе:

– внедрения основополагающего стандарта ПАО «Газпром нефти» на УНЦО, разработку которого Центр развития СУОД завершает в 2018 г.;

– анализа существующей автоматизированной системы управленческой отчетности.

Выводы

1. Совокупный экономический результат – ключевой показатель эффективности деятельности, связанной с УНЦО.

2. Внедрение и анализ отчетности о затратах и ущербе от отказов и нарушения целостности оборудования дают возможность приоритизации затрат на УНЦО.

3. Риск-ориентированный подход обеспечивает наиболее эффективное распределение прямых затрат на УНЦО.

4. Текущее состояние УНЦО в БРД в части как процедур, так и обеспечения нормативно-методической документацией позволяет внедрить основополагающий стандарт на УНЦО без значительных изменений действующих документов.