Соматическаяивисцеральнаячувствительность

Сенсорные ощущения подразделяются на 3 физиологических класса: механорецептивные , температурные и болевые . Механорецептивные ощущения включают тактильные (прикосновение, давление, вибрация) и проприоцептивные (постуральные) - ощущение позы, статического положения и положения при движении.
По месту возникновения ощущений чувствительность классифицируется, как экстероцептивная (ощущения, возникающие с поверхности тела), висцеральная (ощущения, возникающие во внутренних органах) и глубокая (ощущения поступают от глубоколежащих тканей - фасций, мышц, костей).
· Соматические сенсорные сигналы передаются с большой скоростью, высокой точностью локализации и определения минимальных градаций интенсивности или изменений силы сенсорного сигнала.
· Висцеральные сигналы характеризуются более низкой скоростью проведения, менее развитой системой пространственной локализации восприятия сигнала, менее развитой системой градации силы раздражения и меньшей способностью передавать быстрые изменения сигнала.

Соматосенсорные сигналы

Тактильная чувствительность

Тактильные ощущения прикосновения, давления и вибрации относятся к раздельным видам ощущений, но воспринимаются одними и теми же рецепторами.
· Ощущение прикосновения - результат стимуляции чувствительных нервных окончаний кожи и подлежащих тканей.
· Ощущение давления возникает в результате деформации глубоких тканей.
· Вибрационное ощущение возникает в результате быстрых повторных сенсорных стимулов, наносимых на те же рецепторы, что и рецепторы, воспринимающие прикосновение и давление.

Тактильные рецепторы

Проприоцептивное чувство

Материал этого раздела см. в книге.

Пути передачи соматосенсорных сигналов

Практически вся сенсорная информация от сегментов тела (см. рис. 9–8) поступает в спинной мозг через проходящие в составе задних корешков центральные отростки чувствительных нейронов спинномозговых узлов (рис. 9–2, 9–3). Войдя в спинной мозг, центральные отростки чувствительных нейронов либо прямо направляются к продолговатому мозгу (лемнисковая система: тонкий, или нежный пучок Голля и клиновидный пучок Бурдаха), либо заканчиваются на вставочных нейронах, аксоны которых идут к таламусу в составе вентрального, или переднего и латерального, или бокового спиноталамических восходящих путей.

Рис . 9 – 2 . Спинной мозг . Вид со спинной стороны. Пояснения в тексте. Карты ядер, пластинок и путей спинного мозга см. в разделе «Ядра и проводящие пути спинного мозга» главы 13.

· Тонкий и клиновидный пучки - проводящие пути проприоцептивной и тактильной чувствительности - проходят в составе заднего канатика той же стороны спинного мозга и заканчиваются в тонком и клиновидном ядрах продолговатого мозга. Аксоны нейронов этих ядер по медиальной петле (отсюда и название - лемнисковая система) переходят на противоположную сторону и направляются к таламусу.

· Спиноталамический путь вентральный - проекционный афферентный путь, проходящий в переднем канатике противоположной стороны. Периферические отростки первых нейронов, расположенных в спинномозговых узлах, проводят тактильные и прессорные ощущения от механорецепторов кожи . Центральные отростки этих нейронов вступают через задние корешки в задние канатики, где поднимаются на 2–15 сегментов и образуют синапсы с вставочными нейронами задних рогов. Аксоны этих нейронов переходят на противоположную сторону и проходят далее в передней периферической зоне переднебоковых канатиков. Отсюда волокна пути восходят к заднелатеральному вентральному ядру таламуса вместе с латеральным спиноталамическим путём.

· Спиноталамический путь латеральный - проекционный афферентный путь, проходящий в боковом канатике. Периферическими рецепторами являются свободные нервные окончания кожи. Центральные отростки псевдоуниполярных нейронов спинномозговых узлов входят в противоположную часть спинного мозга через латеральные отделы задних корешков и, поднявшись в спинном мозге на 1–2 сегмента, образуют синапсы с нейронами роландова студенистого вещества. Аксоны этих нейронов фактически образуют латеральный спиноталамический путь. Они идут на противоположную сторону и поднимаются в латеральных отделах боковых канатиков. Спиноталамические пути проходят через ствол мозга и заканчиваются в вентро-латеральных ядрах таламуса. Это главный путь проведения болевой и температурной чувствительности .

Рис . 9 – 3 . Восходящие пути чувствительности . А . Путь от чувствительных нейронов спинномозговых узлов (первый, или первичный чувствительный нейрон) через вторые нейроны (вставочные нейроны спинного мозга или нервные клетки клиновидного и тонкого ядра продолговатого мозга) к третьим нейронам пути - таламическим. Аксоны этих нейронов направляются к коре головного мозга. Б . Расположение нейронов, передающих разные модальности, в пластинах (римские цифры) спинного мозга.

Задний канатик состоит из толстых миелиновых нервных волокон, проводящих сигналы со скоростью от 30 до 110 м/с; спиноталамические пути состоят из тонких миелиновых волокон, проводящих ПД со скоростью от нескольких метров до 40 м/с.

Соматосенсорная кора

Материал этого раздела см. в книге.

Обработка сигналов в восходяЩих проекционных путях

Материал этого раздела см. в книге.

Болевая чувствительность

Боль - неприятное сенсорное и эмоциональное ощущение, связанное с истинным или потенциальным повреждением ткани или описываемое в терминах такого повреждения. Боль для организма является защитным сигнальным механизмом и может возникнуть в любой ткани, где появились признаки повреждения. Боль подразделяют на быструю и медленную, острую и хроническую.

· Быстрая боль ощущается через 0,1 сек после нанесения болевого стимула. Быструю боль описывают под многими наименованиями: режущая, колющая, острая, электрическая и др. От болевых рецепторов в спинной мозг болевые сигналы передаются по волокнам небольшого диаметра A d со скоростью от 6 до 30 м/с.
· Медленная боль возникает в течение 1 сек и более, а затем медленно нарастает в течение многих секунд или минут (например, медленная жгучая, тупая, пульсирующая, распирающая, хроническая боль). Боль медленного хронического типа передаётся по С‑волокнам со скоростью от 0,5 до 2 м/с.
Существование двойной системы передачи болевых сигналов приводит к тому, что сильное резкое раздражение часто вызывает двойное болевое ощущение. Быстрая боль передаётся немедленно, а через секунду или чуть позже передаётся медленная боль.

Рецепция боли

Боль вызывают многие факторы: механические, температурные и химические болевые стимулы. Быструю боль порождают преимущественно механические и температурные стимулы, медленную - все виды стимулов. Некоторые вещества известны как химические стимуляторы боли: , ионы калия, молочная кислота, протеолитические ферменты. Простагландины повышают чувствительность болевых окончаний, но сами непосредственно не возбуждают их. Болевыми рецепторами (ноцицепторы ) являются свободные нервные окончания (см. рис. 8–1А). Они широко распространены в поверхностных слоях кожи, надкостнице, суставах, стенке артерий. В других глубоких тканях свободных нервных окончаний меньше, но обширные тканевые повреждения могут вызвать боль практически во всех областях организма. Болевые рецепторы практически не адаптируются.

· Действие химических стимулов , вызывающих боль, проявляется при инъекции экстракта из повреждённой ткани в нормальный участок кожи. В экстракте обнаруживаются все описанные выше химические факторы, вызывающие боль. Наиболее сильную боль вызывает , что позволило считать его основной причиной появления боли при повреждении ткани. Кроме того, интенсивность болевых ощущений коррелирует с локальным увеличением ионов калия и повышением активности протеолитических ферментов. Появление боли в этом случае объясняется прямым влиянием протеолитических ферментов на нервные окончания и повышением мембранной проницаемости для K + , что и является непосредственной причиной появления боли.

· Тканевая ишемия , возникающая при прекращении кровообращения в ткани, через несколько минут вызывает сильные болезненные ощущения. Замечено, что чем выше обмен в ткани, тем быстрее появляется боль при нарушении кровотока. Например, наложение манжетки на верхнюю конечность и накачивание воздуха до полного прекращения кровотока вызывает в работающей мышце появление боли через 15–20 сек. В этих же условиях в неработающей мышце боль возникает несколько минут спустя.

· Молочная кислота . Возможной причиной возникновения боли во время ишемии является накопление больших количеств молочной кислоты, но не менее вероятно, что в ткани образуются другие химические факторы (например, и протеолитические ферменты) и именно последние стимулируют болевые нервные окончания.

· Мышечный спазм приводит к появлению боли, лежащей в основе многих клинических болевых синдромов. Причиной возникновения боли может быть непосредственное воздействие спазма на механочувствительные болевые рецепторы мышц. Вероятнее, что причиной возникновения боли является непрямой эффект спазма мышц, сдавливающего кровеносные сосуды и вызывающего ишемию. Наконец, спазм увеличивает скорость обменных процессов в мышечной ткани, создавая условия для увеличения эффекта действия ишемии и выделения веществ, индуцирующих боль.

· Болевые рецепторы практически не адаптируются . В ряде случаев возбуждение болевых рецепторов не только не уменьшается, но и продолжает прогрессивно нарастать (например, в виде тупой распирающей боли). Повышение чувствительности болевых рецепторов называется гипералгезией . Понижение порога болевой чувствительности обнаруживается при длительной температурной стимуляции. Отсутствие адаптационной способности у ноцицепторов не позволяет субъекту забывать о вредоносном воздействии болевых стимулов на ткани его тела.

Передача болевых сигналов

Быстрой и медленной боли соответствуют собственные нервные пути проведения: путь проведения быстрой боли и путь проведения медленной хронической боли .

Проведение быстрой боли

Проведение быстрой боли (рис. 9–7А) от рецепторов осуществляют волокна типа Ad , вступающие в спинной мозг по задним корешкам и синаптически контактирующими с нейронами заднего рога этой же стороны. После образования синапсов с нейронами второго порядка на этой же стороне нервные волокна переходят на противоположную сторону и поднимаются вверх к мозговому стволу в составе спиноталамического тракта в переднебоковых канатиках. В стволе мозга часть волокон синаптически контактирует с нейронами ретикулярной формации, основная же масса волокон проходит к таламусу, оканчиваясь в вентро-базальном комплексе вместе с волокнами лемнисковой системы, несущими тактильную чувствительность. Небольшая часть волокон оканчивается в задних ядрах таламуса. Из этих таламических областей сигналы передаются в другие базальные структуры мозга и в соматосенсорную кору (рис. 9–7А).

Рис . 9 – 7 . Пути передачи болевой чувствительности (А ) и антиноцицептивная система (Б ).

· Локализация быстрой боли в различных частях тела более чёткая, чем медленной хронической боли.

· Передача болевых импульсов (рис. 9–7Б, 9–8). Глутамат и участвует в передаче болевых стимулов в качестве возбуждающего нейромедиатора в синапсах между центральными отростками чувствительных нейронов спинномозгового узла и перикарионами нейронов спиноталамического пути. Блокирование секреции вещества Р и снятие болевых ощущений реализуются через рецепторы опиоидных пептидов, встроенных в мембрану терминали центрального отростка чувствительного нейрона (пример феномена пресинаптического торможения). Источник опиоидного пептида - вставочный нейрон.

Рис . 9–8 . Путь проведения болевых импульсов (стрелки). Вещество Р передаёт возбуждение с центрального отростка чувствительного нейрона на нейрон спиноталамического тракта. Через опиоидные рецепторы энкефалин из вставочного нейрона тормозит секрецию вещества Р из чувствительного нейрона и проведение болевых сигналов. [ 11 ].

Проведение медленной хронической боли

Центральные отростки чувствительных нейронов оканчиваются на нейронах пластин II и III. Длинные аксоны вторых нейронов переходят на другую сторону спинного мозга и в составе переднебокового канатика поднимаются в головной мозг. Эти волокна, проводящие сигналы медленной хронической боли в составе палеоспиноталамического тракта, имеют обширные синаптические связи в стволе мозга, оканчиваясь в ретикулярных ядрах продолговатого мозга, моста и среднего мозга, в таламусе, в области покрышки и в сером веществе, окружающем сильвиев водопровод. Из мозгового ствола болевые сигналы поступают к внутрипластинчатым и вентролатеральным ядрам таламуса, гипоталамусу и другим структурам основания мозга (рис. 9–7Б).

· Локализация медленной хронической боли . Медленная хроническая боль локализуется не в отдельных точках тела, а в его больших частях, таких как рука, нога, спина и т.д. Это объясняется полисинаптическими, диффузными связями путей, проводящих медленную боль.

· Центральная оценка медленной боли . Полное удаление соматосенсорной коры у животных не нарушает у них способности ощущать боль. Следовательно, болевые импульсы, входящие в мозг через ретикулярную формацию мозгового ствола, таламус и другие нижележащие центры, могут вызывать осознанное восприятие боли. Соматосенсорная кора участвует в оценке качества боли.

· Нейромедиатор медленной боли в окончаниях C‑волокон - . Болевые волокна типа C, входящие в спинной мозг, в своих окончаниях выделяют нейромедиаторы глутамат и вещество P. Глутамат действует в течение нескольких миллисекунд. Вещество P выделяется медленнее, его действующая концентрация достигается в течение секунд и даже минут.

Система подавления боли

Организм человека не только ощущает и определяет силу и качество болевых сигналов, но и способен понижать и даже подавлять активность болевых систем. Диапазон индивидуальной реакции на боль необыкновенно широк, и ответная реакция на боль в немалой степени зависит от способности мозга подавлять поступающие в нервную систему болевые сигналы при помощи антиноцицептивной (аналгезирующая, антиболевая) системы. Антиноцицептивная система (рис. 9–7Б) состоит из трёх основных компонентов.

1 . Комплекс торможения боли , расположенный в задних рогах спинного мозга. Здесь боль блокируется до того, как она достигнет воспринимающих отделов мозга.
2 . Большое ядро шва , расположенное по срединной линии между мостом и продолговатым мозгом; ретикулярное парагигантоклеточное ядро , расположенное в боковом отделе продолговатого мозга. Из этих ядер сигналы поступают по заднебоковым столбам в спинной мозг.
3 . Околоводопроводное серое вещество и перивентрикулярная область среднего мозга и верхнего отдела моста, окружающие сильвиев водопровод и частично третий и четвёртый желудочки. Нейроны из этих аналгезирующих областей посылают сигналы к большому ядру шва и ретикулярному парагигантоклеточному ядру.
Электрическая стимуляция околоводопроводного серого вещества или большого ядра шва почти полностью подавляет болевые сигналы, идущие через задние корешки спинного мозга. В свою очередь, стимуляция вышележащих структур мозга возбуждает перивентрикулярные ядра и переднемозговой медиальный пучок гипоталамуса и тем самым вызывает аналгезирующий эффект.

· Нейромедиаторы антиноцицептивной системы . Медиаторами, выделяющимися в окончаниях нервных волокон обезболивающей системы, являются и. Различные отделы аналгезирующей системы чувствительны к морфину, опиатам и опиоидам (b -эндорфину, энкефалинам, динорфину). В частности, энкефалины и динорфин были найдены в структурах аналгезирующей системы мозгового ствола и спинного мозга.

С нейронами большого ядра шва образуют синапсы нервные волокна, содержащие. Аксоны этих нейронов заканчиваются в задних рогах спинного мозга и выделяют из своих окончаний. Серотонин, в свою очередь, возбуждает энкефалинергические нейроны задних рогов спинного мозга (рис. 9–8). Энкефалин вызывает пресинаптическое торможение и постсинаптическое торможение в области синапсов болевых волокон типов C и A d в задних рогах спинного мозга. Предполагается, что пресинаптическое торможение возникает в результате блокады кальциевых каналов в мембране нервных окончаний.

Центральное торможение и отвлекающее раздражение
· С позиций активации противоболевой системы находит объяснение хорошо известный факт забывания боли раненым во время боя (стресс-аналгезия), и известное многим из личного опыта снижение боли при поглаживании или вибрации повреждённого участка тела.
· Стимуляция электрическим вибратором болевого места также приводит к некоторому облегчению боли. Акупунктура используется более 4000 лет для предотвращения или облегчения боли, а в ряде случаев под иглоукалыванием проводятся большие хирургические операции.
· Торможением болевых сигналов в центральных сенсорных путях можно объяснить и эффективность отвлекающего раздражения, применяемого при стимуляции кожи в области воспаления внутреннего органа. Так, горчичники и перцовые пластыри работают по этому принципу.

Отражённая боль

Раздражение внутренних органов часто вызывает боль, которая ощущается не только во внутренних органах, но и в некоторых соматических структурах, находящихся достаточно далеко от места вызова боли. Такая боль называется отражённой (иррадиирующей).

Наиболее известным примером отражённой боли является сердечная боль, иррадиирующая в левую руку. Однако будущий врач должен знать, что участки отражения боли не являются стереотипными, а необычные области отражения наблюдаются довольно часто. Сердечная боль, например, может быть чисто абдоминальной, она может иррадиировать в правую руку и даже в шею.

Правило дерматомеров . Афферентные волокна от кожи, мышц, суставов и внутренних органов входят в спинной мозг по задним корешкам в определённом пространственном порядке. Кожные афферентные волокна каждого заднего корешка иннервируют ограниченную область кожи, называемую дерматомером (рис. 9–9). Отражённая боль обычно возникает в структурах, развивающихся из одного и того же эмбрионального сегмента, или дерматомера. Этот принцип называется «правилом дерматомера». Например, сердце и левая рука имеют одну и ту же сегментарную природу, а яичко мигрировало со своим нервным снабжением из урогенитального валика, из которого возникли почки и мочеточники. Поэтому не удивительно, что боль, возникшая в мочеточниках или почках, иррадиирует в яичко.

Рис . 9 – 9 . Дерматомеры

Конвергенция и облегчение в механизме возникновения отражённой боли

В развитии отражённой боли принимают участие не только висцеральные и соматические нервы, входящие в нервную систему на одном сегментарном уровне, но и большое количество сенсорных нервных волокон, проходящих в составе спиноталамических путей. Это создаёт условия для конвергенции периферических афферентных волокон на таламических нейронах, т.е. соматические и висцеральные афференты конвергируют на одних и тех же нейронах (рис. 9–10).

· Теория конвергенции . Большая скорость, постоянство и частота информация о соматической боли способствует закреплению мозгом информации о том, что сигналы, поступающие в соответствующие нервные пути, вызваны болевыми стимулами в определённых соматических областях тела. Когда те же нервные пути возбуждаются активностью висцеральных болевых афферентных волокон, то сигнал, достигающий мозга, не дифференцируется, и боль проецируется на соматическую область тела.

· Теория облегчения . Другая теория происхождения отражённой боли (так называемая теория облегчения) основывается на предположении, что импульсация от внутренних органов понижает порог спиноталамических нейронов к воздействиям афферентных болевых сигналов из соматических областей . В условиях облегчения даже минимальная болевая активность из соматической области проходит в мозг.

Рис . 9 – 10 . Отражённая боль

Если конвергенция - единственное объяснение происхождения отражённой боли, то местная анестезия области отражённой боли не должна оказывать никакого влияния на боль. С другой стороны, если подпороговые облегчающие влияния участвуют в возникновении отражённой боли, то боль должна исчезнуть. Действие местной анестезии на область отражённой боли варьирует. Тяжелая боль обычно не проходит, боль умеренная может полностью прекращаться. Следовательно, оба фактора - конвергенция и облегчение - участвуют в возникновении отражённой боли.

Необычная и продолжительная боль

У некоторых людей повреждение и болезнетворный процесс, травмирующий периферические нервы, вызывает тяжёлое, истощающее и ненормально устойчивое болевое ощущение.
· Гипералгезия , при которой стимулы, ведущие обычно к умеренному чувству боли, вызывают тяжелую, длительную боль.
· Каузалгия - стойкое ощущение жжения, развивающееся обычно после сосудистого поражения чувствительных волокон периферического нерва.
· Аллодиния - болевые ощущения, при которых нейтральные стимулы (например, лёгкое дуновение ветра или касание одежды причиняют интенсивную боль).
· Гиперпатия - болевое ощущение, при котором болевой порог повышен, но при его достижении вспыхивает интенсивная, жгучая боль.
· Фантомная боль представляет собой болевое ощущение в отсутствующей конечности.

Причины этих болевых синдромов окончательно не установлены, но известно, что эти виды боли не уменьшаются при местной анестезии или перерезке нерва. Экспериментальные исследования указывают на то, что повреждение нерва приводит к интенсивному разрастанию и ветвлению норадренергических нервных волокон в чувствительных ганглиях, откуда выходят задние корешки по направлению к повреждённой области. По-видимому, симпатические разряды способствуют появлению необычных болевых сигналов. Таким образом, на периферии возникает замкнутый круг. Относящиеся к нему повреждённые нервные волокна стимулируются норадреналином на уровне задних корешков. a -Адренергическая блокада уменьшает болевые каузалгические ощущения.

Таламический синдром . Спонтанная боль может возникать на уровне таламуса. При таламическом синдроме имеется повреждение задних таламических ядер, обычно вызываемое закупоркой ветвей задней мозговой артерии. Пациенты с этим синдромом имеют приступы продолжительных и тяжелых, исключительно неприятных болей, возникающих спонтанно или в ответ на различные сенсорные стимулы.

Боль можно снять применением адекватных доз анальгетиков, но это происходит не во всех случаях. Для смягчения непереносимых болей используется метод хронического раздражения дорсальных корешков имплантированными электродами. Электроды соединены с портативным стимулятором, и пациент может сам себя стимулировать в необходимых случаях. Облегчение от боли достигается, по всей видимости, антидромным проведением импульсов через коллатерали к антиболевой системе задних корешков. Самостимуляция околоводопроводного серого вещества также помогает уменьшить нестерпимые боли, вероятно, за счёт выделения .

Висцеральная боль

В практической медицине боль, возникающая во внутренних органах, является важным симптомом воспаления, инфекционных болезней и других нарушений. Любой стимул, который чрезмерно возбуждает нервные окончания во внутренних органах, вызывает боль. К ним относятся ишемия висцеральной ткани, химическое повреждение поверхности внутренних органов, спазм гладкой мускулатуры полых органов, растяжение полых органов и растяжение связочного аппарата. Все виды висцеральной боли передаются через болевые нервные волокна, проходящие в составе вегетативных нервов, преимущественно симпатических. Болевые волокна представлены тонкими C‑волокнами, проводящими хроническую боль.

Причины висцеральной боли

· Ишемия вызывает боль в результате образования кислых продуктов метаболизма и продуктов распада тканей, а также и протеолитических ферментов, раздражающих болевые нервные окончания.

· Спазм полых органов (таких как участок кишки, мочеточника, жёлчного пузыря, жёлчных протоков и др.) вызывает механическое раздражение болевых рецепторов. Иногда механическое раздражение комбинируется с ишемией, вызванной спазмом. Часто болевые ощущения из спазмированного органа приобретают форму острейшего спазматического приступа, нарастающего до определённой степени, а затем постепенно убывающего.

· Химическое раздражение может возникать в тех случаях, когда повреждающие вещества поступают из ЖКТ в брюшную полость. Попадание желудочного сока в брюшную полость охватывает обширную зону раздражения болевых рецепторов и порождает нестерпимо острую боль.
· Перерастяжение полых органов раздражает механически болевые рецепторы и нарушает кровоток в стенке органа.

Головная боль

Головная боль является разновидностью отражённой боли, воспринимаемой как болевое ощущение, возникающее на поверхности головы. Многие виды болей возникают от болевых стимулов внутри черепа, другие - от раздражителей, расположенных снаружи черепа.

Головные боли внутричерепного происхождения

· Чувствительные к боли области внутри черепа . Сам мозг полностью лишен болевой чувствительности. Даже разрез или электрическая стимуляция сенсорной области коры только случайно могут вызвать боль. Вместо боли в областях, представленных в соматосенсорной зоне коры, возникают ощущения лёгкого покалывания - парестезии. Следовательно, вряд ли большинство головных болей вызвано повреждениями паренхимы мозга.

· Давление на венозные синусы , окружающие мозг, повреждение мозжечкового намёта или растяжение твёрдой мозговой оболочки в области основания мозга могут вызывать интенсивные боли, определяемые как головная боль. Все виды травматизации (раздавливание, растяжение, скручивание сосудов мозговых оболочек) вызывают головную боль. Особенно чувствительны структуры средней мозговой артерии.

· Менингеальные боли - наиболее тяжёлый вид головных болей, возникающих при воспалительных процессах мозговых оболочек и отражающихся по всей поверхности головы.
· Боли при снижении давления в спинномозговой жидкости возникают из–за уменьшения количества жидкости и растягивания весом самого мозга мозговых оболочек.

· Боль при мигрени возникает в результате спастических сосудистых реакций. Считают, что мигрень появляется в результате длительных эмоций или напряжения, вызывающих спазм некоторых артериальных сосудов головы, включающих и сосуды, снабжающие мозг. В результате ишемии, вызванной спазмом, наступает потеря тонуса сосудистой стенки длительностью от 24 до 48 час. Пульсовые колебания АД более интенсивно растягивают расслабленные атоничные сосудистые стенки артерий, и это перерастяжение стенок артерий, включая и экстракраниальные (например, височные артерии) приводит к приступу головной боли.

Происхождение мигрени объясняют также эмоциональными отклонениями, приводящими к распространяющейся корковой депрессии. Депрессия вызывает локальное накопление ионов калия в ткани мозга, инициирующее сосудистый спазм.

· Алкогольная боль вызвана прямым токсическим раздражающим действием ацетальдегида на мозговые оболочки.

Головные боли внечерепного происхождения

· Головные боли в результате мышечного спазма возникают при эмоциональном напряжении многих мышц, прикреплённых к черепу и плечевому поясу. Боль отражается по поверхности головы и напоминает внутричерепную боль.
· Головные боли при раздражении носовой полости и придаточных пазух носа не обладают большой интенсивностью и отражаются на фронтальной поверхности головы.

· Головные боли при нарушениях функции глаз могут возникать при сильных сокращениях ресничной мышцы, при попытках добиться лучшего видения. Это может вызывать рефлекторный спазм лицевых и наружных глазных мышц и появление головной боли. Второй вид боли может наблюдаться при «ожогах» сетчатки ультрафиолетовым излучением, а также при раздражении конъюнктивы.

Боль - это величайший эволюционный механизм, который позволяет человеку вовремя замечать опасность и реагировать на нее. Рецепторы болевой чувствительности - это особые клетки, которые отвечают за прием информации, а затем передают ее к мозгу в болевой центр. Подробнее о том, где расположены эти нервные клетки и каким образом они действуют, вы сможете прочесть в этой статье.

Боль

Боль - это неприятное ощущение, которое передают нашему мозгу нейроны. Дискомфорт появляется не просто так: он сигнализирует о фактическом или потенциальном повреждении в организме. Например, если поднести руку слишком близко к огню, здоровый человек тут же ее отдернет. Это мощнейший защитный механизм, который моментально сигнализирует о возможных или текущих неполадках и заставляет нас сделать все, чтобы исправить их. Зачастую боль свидетельствует о конкретных травмах или повреждениях, но также она может носить и хронический, выматывающий характер. У некоторых людей болевые рецепторы обладают повышенной чувствительностью, в результате чего у них появляется боязнь любых прикосновений, так как они вызывают дискомфортные ощущения.

Знать принцип действия ноцицепторов в здоровом организме нужно для того, чтобы понять, с чем связан болевой синдром, как его лечить, а также какие причины вызывают чрезмерную чувствительность нейронов. В настоящее время Всемирная Организация Здравоохранения признала, что ни один человек не должен терпеть боль любого рода. На рынке существует множество препаратов, которые могут полностью купировать или заметно уменьшить болевые ощущения даже у раковых больных.

Зачем нужна боль?

Чаще всего болевые ощущения появляются из-за травмы или болезни. Что происходит в организме, когда, например, мы дотрагиваемся до острого предмета? В это время рецепторы, находящиеся на поверхности нашей кожи, распознают чрезмерную стимуляцию. Мы еще не чувствуем боли, хотя сигнал о ней уже мчится по синапсам к мозгу. Получив сообщение, мозг дает сигнал действовать, и мы отдергиваем руку. Весь этот сложный механизм занимает буквально тысячные доли секунды, ведь от скорости реакции зависит жизнь человека.

Болевые рецепторы на волосяном покрове расположены буквально везде, и это позволяет коже оставаться чрезвычайно чувствительной и чутко реагировать на малейший дискомфорт. Ноцицепторы способны реагировать на интенсивность ощущений, повышение температуры, а также различные химические изменения. Поэтому выражение «боль только в твоей голове» верно, так как именно мозг образовывает неприятные ощущения, заставляющие человека избегать опасности.

Ноцицепторы

Болевой рецептор представляет собой особый тип нервных клеток, которые отвечают за прием и передачу сигналов о различных стимуляциях, которые затем передаются в центральную нервную систему. Рецепторы выпускают химикаты под названием нейротрансмиттеры, которые с огромной скоростью проходят через нервы, спинной мозг к главному «компьютеру» человека в болевой центр. Весь процесс передачи сигналов называется ноцицепцией, а болевые рецепторы, которые расположены в большинстве известных тканей, - ноцицепторами.

Механизм действия ноцицепторов

Как действуют болевые рецепторы в мозге? Они активируются в ответ на какую-либо стимуляцию, будь она внутренней или внешней. В качестве внешней стимуляции можно привести в пример острую булавку, до которой вы случайно дотронулись пальцем. Внутренняя стимуляция может быть вызвана ноцицепторами, расположенными во внутренних органах или костях, например, остеохондрозом или искривлением позвоночника.

Ноцицепторы представляют собой мембранные белки, которые распознают два вида воздействия на мембрану нейрона: физическое и химическое. Когда ткани человека повреждены, рецепторы активируются, что приводит к открытию катионных каналов. В результате, возбуждаются, и в мозг посылается сигнал боли. В зависимости от того, какого рода воздействие оказано на ткани, выделяются разные химические вещества. Мозг обрабатывает их и выбирает «стратегию», по которой нужно действовать. Кроме того, болевые рецепторы не только принимают сигнал и передают его в мозг, но и выделяют биологически активные соединения. Они расширяют сосуды, способствуют привлечению клеток иммунной системы, которые, в свою очередь, помогают быстрее восстановиться организму.

Где они расположены

Человека пронизывает все тело от кончиков пальцев до живота. Она позволяет ощущать и контролировать все тело, отвечает за координацию и передачу сигналов от мозга к различным органам. В этот сложнейший механизм также входит оповещение о травме или каком-либо повреждении, которое начинается с болевых рецепторов. Они располагаются практически во всех нервных окончаниях, хотя наиболее часто их можно встретить в коже, мышцах и суставах. Также они распространены в соединительных тканях и во внутренних органах. На одном квадратном сантиметре кожи человека расположено от 100 до 200 нейронов, которые обладают возможностью реагировать на изменения в окружающей среде. Иногда эта поразительная способность человеческого организма приносит немало проблем, но, в основном, помогает спасти жизнь. Хоть временами нам и хочется избавиться от боли и ничего не чувствовать, эта чувствительность необходима для выживания.

Болевые рецепторы кожи обладают, пожалуй, наибольшим распространением. Однако ноцицепторы можно найти даже в зубах и надкостнице. В здоровом организме любая боль является сигналом о каких-либо неполадках, и ее ни в коем случае нельзя игнорировать.

Различие в типах нерва

Наука, изучающая процесс возникновения боли и ее механизмы, является достаточно сложной для понимания. Однако, если взять за основу знания о нервной системе, то все может оказаться куда проще. Периферическая нервная система является ключевой для организма человека. Она выходит за пределы головного и спинного мозга, поэтому с помощью нее человек не может думать или дышать. Зато она служит отличным «датчиком», который способен уловить мельчайшие изменения как внутри тела, так и снаружи. Состоит она из черепных, спинальных и афферентных нервов. Именно афферентные нервы располагаются в тканях и органах и передают сигнал в мозг об их состоянии. В тканях есть несколько видов афферентных ноцицепторов: А-дельта и С-сенсорные волокна.

Волокна А-дельта покрыты своеобразным гладким защитным экраном, благодаря чему они передают болевые импульсы быстрее всего. Они реагируют на острую и четко локализованную боль, которая требует незамедлительных действий. К такой боли можно отнести ожог, рану, травму и другие повреждения. Чаще всего А-дельта волокна расположены в мягких тканях и в мышцах.

С-сенсорные болевые волокна, напротив, активируются в ответ на неинтенсивные, но длительные болевые стимулы, которые не имеют четкой локализации. Они не миелинизированы (не покрыты гладкой оболочкой) и поэтому передают сигнал в мозг несколько медленнее. Чаще всего эти боевые волокна реагируют на повреждение внутренних органов.

Путешествие сигнала боли

Как только болевой стимул передается по афферентным волокнам, он должен пройти через спинной рог спинного мозга. Это своеобразный ретранслятор, который сортирует сигналы и передает их в соответствующие разделы мозга. Некоторые болевые стимулы передаются непосредственно в таламус или головной мозг, что позволяет дать быстрый ответ в виде действия. Другие отправляются в лобную кору для дальнейшей обработки. Именно в лобной коре возникает сознательная реализация боли, которую мы чувствуем. Из-за этого механизма, во время экстренных ситуаций, мы даже не успеваем почувствовать неприятные ощущения в первые секунды. Например, при ожоге самая сильная боль наступает через несколько минут.

Реакция мозга

Последним шагом в процессе передачи сигнала о боли является ответ от мозга, который сообщает организму, как ему нужно реагировать. Эти импульсы передаются по эфферентным черепным нервам. Во время передачи сигнала о боли в головном и спинном мозге выделяются разнообразные химические соединения, которые либо уменьшают, либо увеличивают восприятие болевого стимула. Они называются нейрохимическими медиаторами. В их состав входят эндорфины, которые являются натуральными анальгетиками, а также серотонин и норадреналин, которые усиливают восприятие боли человеком.

Виды болевых рецепторов

Ноцицепторы делят на несколько видов, каждый из которых является чувствительным лишь к одному виду раздражения.

  • Рецепторы температуры и химических раздражителей. Рецептор, отвечающий за восприятие этих стимулов, получил название TRPV1. Его начали изучать еще в 20 веке для того, чтобы получить лекарство, способное избавить от боли. TRPV1 играет роль при онкологии, болезнях дыхательных путей и многих других.
  • Пуриновые рецепторы реагируют на повреждение тканей. При этом в межклеточное пространство попадают молекулы АТФ, которые в свою очередь влияют на пуринергические рецепторы, запускающие болевой стимул.
  • Рецепторы кислоты. Многие клетки обладают кислоточувствительными ионными каналами, которые могут реагировать на различные химические соединения.

Разнообразие видов болевых рецепторов позволяет быстро передавать в мозг сигнал о наиболее опасных повреждениях и вырабатывать соответствующие химические соединения.

Типы боли

Почему иногда так сильно что-то болит? Как избавиться от боли? Этими вопросами человечество задавалось несколько веков и вот, наконец, нашло ответ. Существует несколько типов боли - острая и хроническая. Острая часто появляется из-за повреждения тканей, например, при переломе кости. Также она может быть связана с головными болями (которыми страдает большая часть человечества). Острая боль уходит так же быстро, как и появляется - как правило сразу после того, как источник боли (например, поврежденный зуб) будет удален.

С хронической болью дело обстоит несколько сложнее. Медики до сих пор не могут полностью избавить своих пациентов от застарелых травм, которые беспокоят их на протяжении многих лет. Хронические боли обычно связаны с длительными болезнями, неустановленными причинами, раком или дегенеративными заболеваниями. Одним из главных сопутствующих факторов хронической боли - неустановленная причина. У пациентов, которые в течение длительного времени испытывают болевые ощущения часто наблюдается депрессия, а болевые рецепторы видоизменяются. Также нарушается химическая реакция организма. Поэтому врачи делают все возможное, чтобы установить источник боли, а если это невозможно, назначают болеутоляющие препараты.

Болеутоляющие препараты

Обезболивающие, или болеутоляющие, препараты, как их иногда называют, обычно работают при помощи нейрохимических медиаторов. Если препарат ингибирует высвобождение «вторичных мессенджеров», то болевые рецепторы просто не активируются, в результате чего сигнал не доходит до мозга. То же самое происходит, если реакция мозга в ответ на раздражитель нейтрализуется. В большинстве случаев обезболивающие могут только временно повлиять на ситуацию, но не могут вылечить основную проблему. Все, что в их силах - это не давать человеку чувствовать боль, связанную с хроническим заболеванием или травмой.

Итоги

Болевые рецепторы волосяного покрова, лимфы и крови позволяют организму человека быстро реагировать на внешние стимулы: изменение температуры, давление, химические кислоты и повреждение тканей. Информация активирует ноцицепторы, которые отправляют сигнал по периферической нервной системе в мозг. Тот, в свою очередь, немедленно реагирует и посылает обратный импульс. В результате мы отдергиваем руку от огня раньше, чем успеваем осознать это, что позволяет существенно снизить степень повреждений. Болевые рецепторы имеют, пожалуй, такое влияние на нас в экстренных ситуациях.

Физиология боли

В узком смысле слова боль – это неприятное ощущение, возникающее при действии сверхсильных раздражителей, вызывающих структурно-функциональные нарушения в организме. Отличия боли от других ощущений в том, что она не информирует мозг о качестве раздражителя, а указывает на то, что раздражитель является повреждающим. Другой особенностью болевой сенсорной системы является наиболее сложной и мощный ее эфферентный контроль.

Болевой анализатор запускает в ЦНС несколько программ ответа организма на боль. Следовательно, боль имеет несколько компонентов. Сенсорный компонент боли характеризует ее как неприятное, тягостное ощущение; аффективный компонент – как сильную отрицательную эмоцию; мотивационный компонент – как отрицательную биологическую потребность, запускающую поведение организма, направленное на выздоровление. Моторный компонент боли представлен различными двигательными реакциями: от безусловных сгибательных рефлексов до двигательных программ антиболевого поведения. Вегетативный компонент характеризует нарушение функций внутренних органов и обмена веществ при хронических болях. Когнитивный компонент связан с самооценкой боли, боль при этом выступает как страдание. При деятельности других систем эти компоненты слабо выражены.

Биологическая роль боли определяется несколькими факторами. Боль исполняет роль сигнала об угрозе или повреждении тканей организма и предупреждает их. Боль имеет познавательную функцию: человек через боль учится избегать возможных опасностей внешней среды. Эмоциональный компонент боли выполняет функцию подкрепления при образовании условных рефлексов. Боль является фактором мобилизации защитно-приспособительных реакций организма при повреждении его тканей и органов.

Выделяют два вида боли – соматическую и висцеральную. Соматическую боль подразделяют на поверхностную и глубокую Поверхностная боль может быть ранняя (быстрая, эпикрическая) и поздняя (медленная, протопатическая).

Существуют три теории боли.

1. Теория интенсивности была предложена Э.Дарвином и А.Гольдштейнером. По этой теории боль не является специфическим чувством и не имеет своих специальных рецепторов. Она возникает при действии сверхсильных раздражителей на рецепторы пяти известных органов чувств. В формировании боли участвуют конвергенция и суммация импульсов в спинном и головном мозге.

2. Теория специфичности была сформулирована немецким физиологом М.Фреем. В соответствии с этой теорией боль является специфическим чувством, имеющим собственный рецепторный аппарат, афферентные волокна и структуры головного мозга, перерабатывающие болевую информацию. Эта теория в дальнейшем получила более полное экспериментальное и клиническое подтверждение.

3. Современная теория боли базируется преимущественно на теории специфичности. Было доказано существование специфичных болевых рецепторов. Вместе с тем в современной теории боли использовано положение о роли центральной суммации и конвергенции в механизмах боли. Наиболее крупными достижениями современной теории боли является разработка механизмов центрального восприятия боли и запуска противоболевой системы организма.

Болевые рецепторы

Болевые рецепторы являются свободными окончаниями чувствительных миелиновых нервных волокон Аδ и немиелиновых волокон С. Они найдены в коже, слизистых оболочках, надкостнице, зубах, мышцах, суставах, внутренних органах и их оболочках, сосудах. Их нет в нервной ткани головного и спинного мозга. Наибольшая их плотность имеется на границе дентина и эмали зуба.

Выделяют следующие основные типы болевых рецепторов:

1. Механоноцицепторы и механотермические ноцицепторы Аδ-волокон реагируют на сильные механические и термические раздражители, проводят быструю механическую и термическую боль, быстро адаптируются; расположены преимущественно в коже, мышцах, суставах, надкостнице; их афферентные нейроны имеют малые рецептивные поля.

2. Полисенсорные ноцицепторы С-волокон реагируют на механические, термические и химические раздражители, проводят позднюю плохо локализованную боль, медленно адаптируются; их афферентные нейроны имеют большие рецептивные поля.

Болевые рецепторы возбуждаются тремя видами раздражителей:

1. Механические раздражители, создающие давление более 40г/мм 2 при сдавливании, растяжении, сгибании, скручивании.

2. Термические раздражители могут быть тепловыми (> 45 0 С) и холодовыми (< 15 0 С).

3. Химические раздражители, освобождающиеся из поврежденных клеток тканей, тучных клеток, тромбоцитов (К + , Н + , серотонин, ацетилхолин, гистамин), плазмы крови (брадикинин, каллидин) и окончаний ноцицептивных нейронов (вещество Р). Одни из них возбуждают ноцицепторы (К + , серотонин, гистамин, брадикинин, АДФ), другие сенсибилизируют их.

Свойства болевых рецепторов: болевые рецепторы имеют высокий порог возбуждения, что обеспечивает их ответ только на чрезвычайные раздражители. Ноцицепторы С-афферентов плохо адаптируются к длительно действующим раздражителям. Возможно повышение чувствительности болевых рецепторов – снижение порога их раздражения при многократной или длительной стимуляции, что называется гипералгезией. При этом ноцицепторы способны отвечать на стимулы субпороговой величины, а также возбуждаться раздражителями других модальностей.

Проводящие пути болевой чувствительности

Нейроны, воспринимающие болевую импульсацию. От болевых рецепторов туловища, шеи и конечностей Аδ- и С-волокна первых чувствительных нейронов (их тела находятся в спинальных ганглиях) идут в составе спинномозговых нервов и входят через задние корешки в спинной мозг, где разветвляются в задних столбах и образуют синаптические связи прямо или через интернейроны со вторыми чувствительными нейронами, длинные аксоны которых входят в состав спиноталамических путей. При этом они возбуждают два вида нейронов: одни нейроны активируются только болевыми стимулами, другие – конвергентные нейроны – возбуждаются также и неболевыми стимулами. Вторые нейроны болевой чувствительности преимущественно входят в состав боковых спиноталамических путей, которые и проводят большую часть болевых импульсов. На уровне спинного мозга аксоны этих нейронов переходят на сторону, противоположную раздражению, в стволе головного мозга они доходят до таламуса и образуют синапсы на нейронах его ядер. Часть болевой импульсации первых афферентных нейронов переключаются через интернейроны на мотонейроны мышц-сгибателей и участвуют в формировании защитных болевых рефлексов. В боковом спиноталамическом пути выделяют эволюционно более молодой неоспиноталамический путь и древний палеоспиноталамический путь.

Неоспиноталамический путь проводит болевые сигналы по Аδ-волокнам преимущественно в специфические сенсорные (вентральные задние) ядра таламуса, имеющие хорошую топографическую проекцию периферии тела. Кроме этого небольшая часть импульсов поступает в ретикулярную формацию ствола и далее в неспецифические ядра таламуса. Передача возбуждения в синапсах этого пути осуществляется с помощью быстродействующего медиатора глутамата. Из специфических ядер таламуса болевые сигналы передаются преимущественно в сенсорную кору больших полушарий. Эти особенности формируют основную функцию неоспиноталамического пути – проведение «быстрой» боли и восприятие ее с высокой степенью локализации.

Палеоспиноталамический путь проводит болевые сигналы по С-волокнам преимущественно в неспецифические ядра таламуса прямо или после переключения в нейронах ретикулярной формации ствола мозга. Передача возбуждения в синапсах этого пути происходит более медленно. Медиатором является вещество Р. Из неспецифических ядер импульсация поступает в сенсорную и другие отделы коры больших полушарий. Небольшая часть импульсации поступает и в специфические ядра таламуса. В основном волокна этого пути оканчиваются на нейронах 1) неспецифических ядер таламуса; 2) ретикулярной формации; 3) центрального серого вещества; 4) голубого пятна; 5) гипоталамуса. Через палеоспиноталамический путь проводится «поздняя», плохо локализуемая боль, формируются аффективно-мотивационные проявления болевой чувствительности.

Кроме этого болевая чувствительность частично проводится по другим восходящим путям: переднему спиноталамическому, тонкому и клиновидному путям.

Вышеназванные пути проводят и другие виды чувствительности: температурную и тактильную.

Роль коры больших полушарий в восприятии боли

Полноценное чувственное восприятие боли организмом без участия коры головного мозга невозможно.

Первичное проекционное поле болевого анализатора находится в соматосенсорной коре задней центральной извилины. Оно обеспечивает восприятие «быстрой» боли и идентификацию места ее возникновения на теле. Для более точной идентификации локализации боли в процесс обязательно включается и нейроны моторной коры передней центральной извилины.

Вторичное проекционное поле расположено в соматосенсорной коре на границе пересечения центральной борозды с верхним краем височной доли. Нейроны данного поля имеют двусторонние связи с ядрами таламуса, что позволяет этому полю избирательно фильтровать, проходящие через таламус возбуждения болевого характера. А это в свою очередь позволяет данному полю вовлекаться в процессы, связанные с извлечением из памяти энграммы необходимого поведенческого акта, его реализации в деятельности эффекторов и оценки качества достигнутого полезного результата. Двигательные компоненты болевого поведения формируются в совместной деятельности моторной и премоторной коры, базальных ганглиев и мозжечка.

Лобная кора играет важную роль в восприятии боли. Она обеспечивает самооценку боли (ее когнитивный компонент) и формирование целенаправленного болевого поведения.

Лимбическая система (поясная извилина, гиппокамп, зубчатая извилина, миндалевидный комплекс височной доли) получает болевую информацию от передних ядер таламуса и формирует эмоциональный компонент боли, запускает вегетативные, соматические и поведенческие реакции, обеспечивающие приспособительные реакции к болевому раздражителю.

Некоторые виды болевых ощущений

Существуют боли, которые названы проекционными или фантомными . Их возникновение основано на законе проекции боли: какая бы часть афферентного пути не раздражалась, боль ощущается в области рецепторов данного сенсорного пути. По современным данным в формировании данного вида болевого ощущения участвуют все отделы болевой сенсорной системы.

Существуют также так называемые отраженные боли: когда боль ощущается не только в пораженном органе, но и в соответствующем дерматоме тела. Участки поверхности тела соответствующего дерматома, где возникает ощущение боли, назвали зонами Захарьина – Геда . Возникновение отраженных болей связано с тем, что нейроны, проводящие болевую импульсацию от рецепторов пораженного органа и кожи соответствующего дерматома, конвергируют на одном и том же нейроне спиноталамического пути. Раздражение этого нейрона с рецепторов пораженного органа в соответствии с законом проекции боли приводит к тому, что боль ощущается и в области кожных рецепторов.

Антиноцицептивная система

Антиболевая система состоит из четырех уровней: спинального, стволового, гипоталамического и коркового.

1. Спинальный уровень антиноцицептовной системы. Важным ее компонентом является «воротный контроль» спинного мозга, концепция которого имеет следующие основные положения: передача болевых нервных импульсов с первых нейронов на нейроны спиноталамических путей (вторые нейроны) в задних столбах спинного мозга модулируется спинальным воротным механизмом – тормозными нейронами, расположенными в желатинозном веществе спинного мозга. На этих нейронах оканчиваются разветвления аксонов различных сенсорных путей. В свою очередь нейроны желатинозной субстанции оказывают пресинаптическое торможение в местах переключения первых и вторых нейронов болевых и других сенсорных путей. Часть нейронов являются конвергентными: на них образуют синапсы нейроны не только от болевых, но и от других рецепторов. Спинальный воротный контроль регулируется соотношением импульсов, поступающих по афферентным волокнам большого диаметра (неболевая чувствительность) и малого диаметра (болевая чувствительность). Интенсивный поток импульсов по волокнам большого диаметра ограничивает передачу болевых сигналов на нейроны спиноталамических путей (закрывает «ворота»). Напротив, интенсивный поток болевых импульсов по первому афферентному нейрону, ингибируя тормозные интернейроны, облегчает передачу болевых сигналов на нейроны спиноталамических путей (открывает «ворота»). Спинальный воротный механизм находится под постоянным влиянием нервных импульсов структур ствола мозга, которые передаются по нисходящим путям как на нейроны желатинозной субстанции, так и на нейроны спиноталамических путей.

2. Стволой уровень антиноцицептивной системы. К стволовым структурам противоболевой системы относятся, во-первых, центральное серое вещество и ядра шва, образующие единый функциональный блок, во-вторых, крупноклеточное и парагигантоклеточное ядра ретикулярной формации и голубое пятно. Первый комплекс блокирует прохождение болевой импульсации на уровне релейных нейронов ядер задних рогов спинного мозга, а также релейных нейронов сенсорных ядер тройничного нерва, образующих восходящие пути болевой чувствительности. Второй комплекс возбуждает почти всю антиноцицептивную систему (см.рис.1).

3. Гипоталамический уровень антиноцицептивной системы, с одной стороны, функционирует самостоятельно, а с другой – выступает как настройка, контролирующая и регулирующая антиноцицептивные механизмы стволового уровня за счет связей гипоталамических нейронов разной ядерной принадлежности и разной нейрохимической специфичности. Среди них идентифицированы нейроны, в окончаниях аксонов которых выделяются энкефалины, β-эндорфин, норадреналин, дофамин см.рис.2).

4. Корковый уровень антиноцицептивной системы. Объединяет и контролирует деятельность антиноцицептивных структур различного уровня соматосенсорная область коры больших полушарий. При этом наиболее важную роль в активации спинальных и стволовых структур играет вторичная сенсорная область. Ее нейроны образуют наибольшее количество волокон нисходящего контроля болевой чувствительности, направляющиеся к задним рогам спинного мозга и ядрам ствола головного мозга. Вторичная сенсорная кора видоизменяет активность стволового комплекса антиноцицептивной системы. Кроме этого соматосенсорные поля коры больших полушарий контролируют проведение афферентных болевых импульсов через таламус. Кроме таламуса, кора большого мозга регламентирует прохождение болевой импульсации в гипоталамусе, лимбической системе, ретикулярной формации, спинном мозге. Ведущая роль в обеспечении кортико-гипоталамических влияний отводится нейронам лобной коры.

Медиаторы антиноцицептивной системы

К медиаторам противоболевой системы относят пептиды, которые образуются в головном мозге, аденогипофизе, мозговом слое надпочечников, желудочно-кишечном тракте, плаценте из неактивных предшественников.. Сейчас к опиатным медиаторам антиноцицептивной системы относят: 1) ά-, β-, γ-эндорфины; 2) энкефалины; 3) динорфины. Эти медиаторы действуют на три вида опиатных рецепторов: μ-, δ-, κ-рецепторы. Наиболее селективным стимулятором μ-рецепторов являются эндорфины, δ-рецепторов – энкефалины, а κ-рецепторов – динорфины. Плотность μ- и κ-рецепторов высокая в коре больших полушарий и в спинном мозгу, средняя – в стволе головного мозга; плотность δ-рецепторов средняя в коре больших полушарий и спинном мозгу, малая – в стволе мозга. Опиоидные пептиды угнетают действие веществ, вызывающих боль, на уровне ноцицепторов, уменьшают возбудимость и проводимость болевой импульсации, угнетают вызванную реакцию нейронов, находящихся в составе цепей, передающих болевую импульсацию. Эти пептиды поступают к нейронам болевой сенсорной системы с кровью и ликвором. Выделяются опиоидные медиаторы в синаптических окончаниях нейронов противоболевой системы. Аналгезирующий эффект эндорфинов высокий в головном и спинном мозге, эффект энкефалинов в этих структурах средний, эффект динорфинов в головном мозге низкий, в спинном мозге – высокий.

Рис.1. Взаимодействие основных элементов обезболивающей системы первого уровня: ствол мозга – спиной мозг. (светлые кружки – возбуждающие нейроны, черные – тормозящие).

Рис.2. Механизм работы обезболивающей системы организма второго уровня (гипоталамус – таламус – ствол мозга) с помощью опиоидов.

Светлые кружки – возбуждающие нейроны, черные - тормозящие.

Степень выраженности болевого ощущения не определяется одной лишь силой экзогенного или эндогенного болевого воздействия. Во многом оно зависит от соотношения активностей ноцицептивного и антиноцицептивного отделов системы боли, что имеет приспособительное значение.

Болевые рецепторы (ноцирецепторы)

Ноцицепторы - специфические рецепторы, при возбуждении которых возникают болевые ощущения. Это свободные нервные окончания, которые могут быть расположены в любых органах и тканях и связаны с проводниками болевой чувствительности. Эти нервные окончания + проводники болевой чувствительности = сенсорная болевая единица. Большинство ноцицепторов имеет двойной механизм возбуждения, т. е. могут возбуждаться под действием повреждающих и неповреждающих агентов.

Периферический отдел анализатора представлен рецепторами боли, которые по предложению Ч. Шеррингтона называют ноцицепторами (от лат. разрушать). Это высокопороговые рецепторы, реагирующие на разрушающие воздействия.

Болевые рецепторы являются свободными окончаниями чувствительных миелиновых и безмиелиновых нервных волокон, расположенных в коже, слизистых оболочках, надкостнице, зубах, мышцах, органах грудной и брюшной полости и других органах и тканях. Число ноцирецепторов в коже человека примерно 100-200 на 1 кв. см. кожной поверхности. Общее число таких рецепторов достигает 2-4 млн.

По механизму возбуждения ноцицепторы делят на следующие основные виды болевых рецепторов:

  • 1. Механоноцицепторы: реагируют на сильные механические раздражители, проводят быструю боль и быстро адаптируются. Механоноцицепторы расположены преимущественно в коже, фасциях, сухожилиях, суставных сумках и слизистых оболочках пищеварительного тракта. Это свободные нервные окончания миелинизированных волокон типа А-дельта со скоростью проведения возбуждения 4 - 30 м/с. Они реагируют на действие агента, вызывающего деформацию и повреждение мембраны рецептора при сжатии или растяжении тканей. Для большинства этих рецепторов характерна быстрая адаптация.
  • 2. Хемоноцицепторы расположены также на коже и в слизистых оболочках, но превалируют во внутренних органах, где локализуются в стенках мелких артерий. Они представлены свободными нервными окончаниями немиелинизированных волокон типа С со скоростью проведения возбуждения 0,4 - 2 м/с. Специфическими раздражителями для этих рецепторов являются химические вещества (алгогены), но только те, которые отнимают кислород у тканей, нарушают процессы окисления.

Выделяют три типа алгогенов, каждый из которых имеет собственный механизм активации хемоноцицепторов.

Тканевые алгогены (серотонин, гистамин, ацетилхолин и др.) образуются при разрушении тучных клеток соединительной ткани и, попадая в интерстициальную жидкость, непосредственно активируют свободные нервные окончания.

Плазменные алгогены (брадикинин, каллидин и простагландины), выполняя роль модуляторов, повышают чувствительность хемоноцицепторов к ноцигенным факторам.

Тахикинины выделяются при повреждающих воздействиях из окончаний нервов (к ним относится вещество П - полипептид), они воздействуют местно на мембранные рецепторы того же нервного окончания.

3. Термоноцицепторы: реагируют на сильные механические и тепловые (более 40 градусов) раздражители, проводят быструю механическую и термическую боль, быстро адаптируются.

Ярослав Алексеевич Андреев - кандидат биологических наук, старший научный сотрудник лаборатории нейрорецепторов и нейрорегуляторов отдела молекулярной нейробиологии Института биоорганической химии им. академиков М. М. Шемякина и Ю. А. Овчинникова РАН. Научные интересы связаны с поиском и характеристикой модуляторов болевых рецепторов.

Юлия Александровна Логашина - младший научный сотрудник той же лаборатории. Занимается поиском и характеристикой новых лигандов TRPA1 рецептора.

Ксения Игоревна Лубова - студентка биологического факультета Московского государственного университета им. М. В. Ломоносова. Изучает TRP рецепторы и их модуляторы.

Александр Александрович Василевский - кандидат химических наук, руководитель группы молекулярных инструментов для нейробиологии отдела молекулярной нейробиологии Института биоорганической химии им. академиков М. М. Шемякина и Ю. А. Овчинникова РАН. Специалист в области ионных каналов и природных токсинов.

Сергей Александрович Козлов - доктор химических наук, руководитель лаборатории нейрорецепторов и нейрорегуляторов того же отдела. Область научных интересов - белковые рецепторы в нервной системе и их лиганды.

Говорят, что жизнь - это боль. Хотя в этой фразе содержится нечто негативное, связанное с неприятными ощущениями, переживаниями или даже тяжелыми страданиями, не стоит забывать, что боль (ноцицепция) предупреждает нас об опасности - сигнализирует о нарушениях в организме, который немедленно принимается их устранять. Вместе с тем существует и боль, которая приносит только мучения.

Основная причина появления такой боли - сбои в передаче болевых сигналов (нервных импульсов) от чувствительных нейронов к головному мозгу, который и формирует неприятные ощущения. Когда воздействие неопасных стимулов распознающие нейроны расценивают как опасное, развивается состояние, которое называется гиперчувствительностью. И это не всегда плохо, так как в нужный момент она играет важную роль в процессе выздоровления и восстановления организма. Однако бывает и так, что реального повода нет, а гиперчувствительность ведет к изнурительной хронической боли. В таком случае самые обычные безобидные стимулы (легкое прикосновение или тепло) вызывают аллодинию (от греч. άλλος - другой и οδύνη - мучение), а болезненные стимулы - боль еще большей интенсивности, гиперальгезию (от греч. ὑπέρ - сверх- и ἄλγος - боль). Часто аномально интенсивная и нередко хроническая боль, которая изматывает и физиологически, и психологически, а также затрудняет выздоровление, возникает в результате таких заболеваний, как артрит, опоясывающий лишай, СПИД, рак костей и др.

Прежде чем винить в аномалиях чувствительные нейроны (ноцицепторы), которые воспринимают, анализируют и передают болевые сигналы, разберемся, как они работают в здоровом организме и что происходит при патологиях.

Почему так больно?

Биологическая функция ноцицепторов состоит не только в регистрации раздражителя и сообщении об этом нашему мозгу, но и в восприятии сигналов от ближайших соседей. Нейроны окружены другими клетками организма и межклеточной средой, за сохранность и правильное функционирование которых отвечает наша нервная система. Поэтому у ноцицепторов имеется множество молекулярных сенсоров (или рецепторов), настроенных на распознавание химических раздражителей, изменения состава и свойств межклеточной среды, выброса сигнальных молекул из близлежащих клеток. Нейрон самостоятельно «вычисляет» вклад каждого такого молекулярного сенсора по силе и длительности стимуляции, и, если стимулы расцениваются как нежелательные, сигнализирует об этом - и нам становится больно; это «нормальная» физиологическая боль (ноцицепция). Патологическая боль возникает как в случае гибели нейронов при повреждении проводящей сети периферической или центральной нервной системы, так и при ошибочной работе самих нейронов, а ошибаются они из-за неправильной работы их сенсоров.

Болевые сенсоры (или рецепторы) - это мембранные белки, которые распознают физическое или химическое воздействие на мембрану нейрона. При этом они являются катион-селективными ионными каналами, то есть обеспечивают проведение положительно заряженных ионов (натрия, калия, кальция) через клеточную мембрану. Активация рецепторов приводит к открытию катионных каналов и возбуждению чувствительных нейронов - возникновению нервного импульса. Подробнее о наиболее изученных болевых рецепторах мы расскажем ниже.

Что происходит, когда, предположим, человек по неосторожности обжег руку горячим предметом? Такое опасное температурное воздействие регистрируют рецепторы, которые располагаются в мембране ноцицептора. Они мгновенно распознают сильную стимуляцию и передают импульс в центральную нервную систему. На столь сильное возбуждение мозг незамедлительно реагирует, и мы рефлекторно отдергиваем руку от горячего предмета. Интересно, что те же сенсоры реагируют на капсаицин - активное вещество жгучего перца, вызывающего «пожар» во рту.

За распознавание ряда опасных химических воздействий отвечают другие рецепторы, которые воспринимают стимулы только с внутриклеточной стороны, поэтому для их активации опасные вещества должны не только проникнуть через кожу, но и попасть внутрь нейрона, «пробравшись» через липидную биомембрану. Если химический ожог вызван кислотой, то работать будет именно тот рецептор, который чувствителен к изменению кислотности среды, и тоже даст сильный ответ, как только кислота достигнет нейрона.

Руку мы отдернули, но за время контакта с горячей поверхностью часть наших клеток погибла, и в ответ на повреждение ткани у нас начинает развиваться воспалительный процесс. В этом тоже принимает участие наша нервная система. Из поврежденных клеток через разорванные цитоплазматические мембраны во внеклеточную среду начинают выделяться характерные для внутриклеточной среды молекулы, в частности аденозинтрифосфорной кислоты (АТФ). На этот случай в нейронах тоже есть свой рецептор, который активируется молекулами АТФ и сигнализирует о том, что рядом с ним произошла гибель клеток и требуется их восстановление. Дело в том, что АТФ, как известно еще со школы, - основная энергетическая молекула организма, и такая «ценность» редко оказывается в межклеточной среде.

Нейрон не просто сигнализирует, он выбрасывает во внеклеточную среду особые биологически активные соединения, медиаторы воспаления, что приводит к длительному развитию нейрогенного воспаления - расширению сосудов и привлечению клеток иммунной системы. Пока идет процесс регенерации и в среде присутствуют медиаторы воспаления, сенсорные нейроны посылают сигнал в центральную нервную систему, где он тоже воспринимается как боль, но уже не такая сильная. Так как поврежденная ткань нуждается в защите, чувствительность нейронов к внешним воздействиям повышается, и даже незначительное механическое или тепловое воздействие будет вызывать сильную болевую реакцию. Это и есть «полезная» гиперчувствительность.

Почти все знают, что к поврежденной ткани рекомендуется приложить холод, чтобы облегчить боль и уменьшить воспаление. В этом эффекте также задействованы нейрональные рецепторы. Главный рецептор «по холоду» - ментоловый (помните «мятный» холодок?) - находится не в тех же нейронах, где располагается «тепловой», а потому ощущения холода и жары передаются различными чувствительными волокнами. Оказывается, информация от разных ноцицепторов «суммируется» в спинном мозгу, сигнал от горячего воздействия корректируется с учетом сигнала от холодного, и именно поэтому приложенный кусочек льда может унять сильную боль.

Описанная схема развития боли сильно упрощена (рис. 1). На самом деле, чтобы разобраться в деталях ноцицепции, ученые исследуют каждый рецептор отдельно в изолированных условиях. Эксперименты проводят на клеточных линиях, в которые методами генной инженерии встраивают гены определенных рецепторов. Расскажем немного об изучении и функциях нескольких наиболее важных болевых рецепторов. Как оказалось, они не всегда ориентированы на распознавание и генерацию болевого сигнала, но вовлечены в регуляцию многих других процессов, поэтому умение корректировать их работу различными лекарственными препаратами поможет лечить разнообразные болезни (рис. 2).

Рецепторы температуры и химических раздражителей

Очень часто в развитии боли и воспаления играют роль чувствительные нейроны, которые отвечают за восприятие высокой температуры. Еще в середине XX века обнаружили, что большие дозы капсаицина вызывают у экспериментальных животных новый тип обезболивания (анальгезии) . После введения капсаицина вначале наблюдается характерная поведенческая реакция, вызванная болью, но затем наступает длительный период потери чувствительности к ряду внешних стимулов. Животные в таком состоянии нормально реагируют на мягкое механическое раздражение, но утрачивают реакцию на многие болевые стимулы, и у них не развивается нейрогенное воспаление. Таким образом, нейроны, отвечающие за восприятие высокой температуры, также отвечают за восприятие химических раздражителей и нейрогенный компонент воспалительного ответа . Стало очевидно, что рецептор, который реагирует на воздействие температуры и капсаицина, может оказаться полезной мишенью для поиска средств, направленных на лечение воспаления и боли . В конце ХХ в. этот рецептор был охарактеризован на молекулярном уровне и назван TRPV1 (от англ. transient receptor potential channel vanilloid family member 1 - первый представитель ванилоидного семейства рецепторов переменного рецепторного потенциала), или проще - ванилоидный рецептор 1 (рис. 3) . Название «ванилоидные рецепторы» дано не случайно: TRPV1 и другие представители семейства активируются химическими соединениями, содержащими ванилиновую группу (например, капсаицином). Установлено, что TRPV1 - катион-селективный ионный канал, который активируется различными стимулами (температурой выше 43°C, низким рН, капсаицином), а кроме того, его активность регулируется медиаторами воспаления, правда, не напрямую, а через внутриклеточных посредников. Мыши, нокаутные по гену TRPV1 (то есть такие, у которых ген этого рецептора отсутствует или поврежден так, что не работает), значительно медленнее реагируют на тепло, и у них почти не появляется тепловая гиперчувствительность при воспалении . TRPV1 играет важную роль в ряде патологических состояний: при болях, вызванных воспалительным процессом, при онкологических, нейропатических и висцеральных болях, а также при заболеваниях дыхательных путей, панкреатите и мигрени.

Исследования TRPV1 привели к интенсивному изучению подобных рецепторов. Так, был обнаружен еще один ванилоидный рецептор - TRPV3. Интересно, что он реагирует как на приятное тепло, так и на болезненный жар: активность TRPV3 регистрируется при температуре выше 33°C, причем его ответ сильнее на более высокую температуру и возрастает при повторяющейся тепловой стимуляции. Помимо температуры, этот рецептор также активируется камфорой, едкими экстрактами тимьяна, орегано и гвоздики. TRPV3 - еще один кандидат на роль участника в болевой гиперчувствительности, его активность регулируется медиаторами воспаления. Наконец, он напрямую активируется оксидом азота II (NO) - вторичным мессенджером, обеспечивающим увеличение чувствительности нейронов к стимуляции. Также следует отметить наличие TRPV3 в клетках кожи кератиноцитах, где его активация приводит к выбросу воспалительного медиатора интерлейкина-1, что подчеркивает важную роль этого рецептора в воспалительных заболеваниях кожи .

TRP-рецепторы - тетрамеры (рис. 3), то есть образованы четырьмя полипептидными цепочками. При этом могут собираться как гомомеры, то есть рецепторы, сформированные одинаковыми цепочками (например, TRPV1 или TRPV3, описанные выше), так и гетеромеры из разных цепей. Гетеромерные рецепторы (например, построенные из цепочек TRPV1 и TRPV3) обладают различной чувствительностью к тепловым стимулам, пороговая температура их активации лежит между значениями, пороговыми для гомомерных рецепторов.

Интересна история открытия холодового рецептора TRPM8 (здесь «M» означает «меластатин», что указывает на функцию рецепторов этого семейства в меланоцитах - клетках кожи, ответственных за пигментацию). Вначале был обнаружен кодирующий его ген, активность которого повышалась при раке простаты и некоторых других онкологических заболеваниях . Много позже была показана способность TRPM8 реагировать на ментол (компонент мяты) и ряд других «освежающих» веществ, а также на понижение температуры (ниже 26°С). Теперь этот рецептор считается основным сенсором холода в нервной системе . Исследования выявили, что TRPM8 отвечает за широкий диапазон восприятия холодовых стимулов - от приятной прохлады до болезненного холода и холодовой гиперчувствительности. Такое разнообразие функций объясняется существованием нескольких субпопуляций чувствительных нейронов, которые используют TRPM8 как многофункциональный сенсор холода, настроенный на определенную температуру при участии внутриклеточных сигнальных систем.

Самый непонятный и очень важный рецептор TRPA1 (здесь «A» означает «анкирин», что указывает на наличие в структуре рецепторов этого семейства большого числа «анкириновых повторов», особых белковых элементов) находят в чувствительных нейронах кожи, клетках эпителия кишечника, легких и мочевого пузыря, причем TRPA1 часто соседствует с TRPV1 . Вещества, активирующие TRPA1, вызывают жжение, механическую и термическую гиперчувствительность, а также нейрогенное воспаление. Гиперэкспрессия гена, кодирующего TRPA1, ведет к возникновению хронического кожного зуда и аллергического дерматита. Наследственное заболевание «синдром эпизодической боли», которое характеризуется неожиданно возникающей изнурительной болью при голодании или физической нагрузке, связано с мутацией в этом рецепторе, приводящей к его избыточной активности .

Основная функция TRPA1 - распознавание химических и воспалительных агентов, и их ассортимент столь велик, что с правильной работой этого рецептора связаны почти все жизненные процессы нашего организма. В дыхательной системе он распознает летучие вредные вещества: слезоточивый газ, озон, альдегиды (акролеин, компоненты корицы), сераорганические соединения (жгучие компоненты горчицы, лука и чеснока), вызывая кашель, чихание и образование слизи. В кишечнике TRPA1 регистрирует присутствие воспалительных агентов. Гиперактивность мочевого пузыря при диабете вызвана активацией этого рецептора акролеином, который накапливается в моче. Выявлено участие TRPA1 в возникновении мигрени под влиянием сигаретного дыма и формальдегида у некоторых людей .

Воздействие на рецепторы чувствительных нейронов, участвующие в восприятии температуры, с помощью лекарственных средств приводит к облегчению боли и воспаления. Именно так, не зная о молекулярных мишенях, народная медицина в разное время применяла настойки перца (TRPV1), горчицы (TRPA1), мяты (TRPM8) и гвоздики (TRPV3) для лечения ряда воспалительных заболеваний.

Пуриновые рецепторы

Мы уже упоминали, что организму очень важно знать о повреждении тканей. При травмах, когда нарушается целостность органов и происходит гибель клеток, при ишемии или воспалении в межклеточное пространство попадают молекулы АТФ. Этот кофермент множества реакций обеспечивает энергией многие процессы в клетке; он слишком ценен для функционирования клеток, поэтому редко выбрасывается за их пределы. Восприятие повышения локальной концентрации АТФ осуществляют пуринергические рецепторы (P2X), являющиеся катион-селективными ионными каналами, они запускают болевой ответ, возникающий вследствие разрушения тканей, деформации органов и развития опухолей . Для чувствительных нейронов характерны подтипы P2X2 и P2X3, важная роль последнего в развитии боли при воспалении показана в исследованиях на нокаутных мышах. Также известно, что P2X-рецепторы имеют принципиальное значение для многих физиологических процессов, таких как регуляция тонуса сосудов, вкусовая рецепция и т.д.

Рецепторы кислоты

Для регистрации кислотности во многих типах клеток нервной системы присутствуют так называемые кислоточувствительные ионные каналы (acid-sensing ion channels , ASIC). Считается, что они осуществляют передачу сигнала, связанного с локальным изменением рН при нормальной нейрональной активности в центральной нервной системе. Однако задействованы они и в патологических процессах. В последнее время рецептор подтипа ASIC1a рассматривается как один из основных факторов гибели нейронов в центральной нервной системе при ишемических состояниях. При ишемии и гипоксии усиливается гликолиз, в результате чего происходит накопление молочной кислоты и последующее «закисление» ткани. «Выключение» рецептора ASIC1a вызывает нейропротекторное действие в модели ишемии, что было показано на нокаутных мышах . В периферической нервной системе и тканях внутренних органов ASIC ответственны за чувствительность к боли, возникающей при тканевом ацидозе в мышцах, при сердечной ишемии, повреждении роговицы, воспалении, новообразованиях и местной инфекции . В нейронах периферической нервной системы в основном представлены рецепторы подтипа ASIC3, активность которых также необходимо понижать для купирования боли.

В отличие от TRP-рецепторов, P2X-рецепторы и ASIC являются тримерами (рис. 3), т.е. собраны из трех полипептидных цепочек. Но точно так же эти рецепторы могут быть гомомерами и гетеромерами, что увеличивает их разнообразие и спектр выполняемых функций.

Как победить боль?

Так что же делать, если мы испытываем боль? Если это боль острая или хроническая, терпеть ее нельзя, и необходимо использовать обезболивающие средства, чтобы вернуть нашу систему ноцицепции в нормальное состояние, а себя - к жизни в самом прямом смысле этого слова. В настоящее время для обезболивания применяется множество лекарственных препаратов различных фармакологических групп. Основное место в этом ряду занимают нестероидные противовоспалительные средства (НПВС), антиконвульсанты и антидепрессанты, а также наркотические анальгетики (морфин и другие опиаты и опиоиды). Имеющиеся в настоящее время анальгетические средства влияют главным образом на пути передачи и распространения боли. Для специфичного регулирования рецепторов боли, описанных выше, пока препаратов на рынке лекарств нет.

Первой «болевой» мишенью для фармацевтических компаний стал рецептор TRPV1, поскольку содержащие его чувствительные нейроны играют роль интеграторов многих стимулов, воспринимающихся как боль. Скрининг химических библиотек и рациональный дизайн лигандов на основе знаний о сайте связывания капсаицина позволили создать значительное количество высокоэффективных низкомолекулярных ингибиторов TRPV1. Эти соединения обладали обезболивающим эффектом, но приводили к развитию гипертермии - повышению температуры тела (на 1,5–3°С). Гипертермия стала основной причиной отказа фармакологических компаний от развития лекарственных препаратов на основе полных антагонистов рецептора TRPV1. Однако если ингибировать этот рецептор лишь частично, повышения температуры тела можно избежать. И такие частичные ингибиторы TRPV1 нам, под руководством академика Е. В. Гришина (1946–2016), удалось найти в яде морской анемоны Heteractis crispa . В яде анемоны обнаружено сразу три пептида, ингибирующих TRPV1 и не повышающих температуру тела [ , ], но наиболее мягким эффектом обладал пептид, получивший название АРНС3. Он имеет сильный анальгетический эффект в дозах 0,01–0,1 мг/кг массы тела и слабо понижает температуру тела (всего на 0,6°С) . По силе обезболивания он сопоставим с морфином, но не вызывает наркотического действия и привыкания. По данным доклинических исследований, пептид полностью пригоден для дальнейших клинических испытаний, так как никакие побочные эффекты на лабораторных животных не были обнаружены. Более того, понижение температуры тела необходимо, например, для обеспечения нейропротекции у выживших после остановки сердца, и гипотермическое действие пептида может служить дополнительным бонусом.

Работая под руководством Гришина, мы также обнаружили ингибитор P2X3-рецепторов. Это тоже оказался пептид, которому было дано имя PT1, а найден он был в яде паука Alopecosa marikovskyi . Кстати, PT1 уже успешно прошел лабораторные и доклинические испытания, так что через какое-то время он вполне может стать одним из первых принципиально новых анальгетиков, специфично ингибирующих «болевые» рецепторы. Для третьего из упомянутых подобных рецепторов, ASIC3, нами также был найден ингибитор: пептид Ugr 9-1; источником стал яд морской анемоны Urticina grebelnyi .

Заметим, что в природных ядах часто находят токсины с обратным эффектом, то есть вещества, активирующие рецепторы боли. С точки зрения биологии ядовитых животных это понятно: «болевые» токсины используются ими в целях защиты. Например, в яде китайского птицееда Haplopelma schmidti содержится сильнейший активатор TRPV1, а из яда техасской коралловой змеи Micrurus tener получен активатор ASIC1a. Сейчас уже научились извлекать пользу из таких веществ: их применяют как молекулярные инструменты, чтобы «замораживать» болевые рецепторы в активированном состоянии и исследовать их структуру (рис. 3) [ , ]. С другой стороны, обнаружение полезных молекул в природных ядах - тоже довольно распространенное явление, и несколько природных токсинов (или веществ, созданных на их основе) сегодня применяются в медицине как лекарства. Вот где обретает особый смысл известное изречение средневекового алхимика Парацельса: «Все есть яд, и ничто не лишено ядовитости; одна лишь доза делает яд незаметным».

Рецепторы чувствительных нейронов представляют собой заманчивую, но сложную мишень для создания лекарств. Препараты, если они обладают хорошей селективностью к этим рецепторам, будут приняты потребителями с большой радостью, так как почти все современные средства ограничены в применении из-за побочных эффектов. Работы по поиску селективных препаратов ведутся, в том числе и в нашей стране, и при благоприятном стечении обстоятельств такие лекарства уже скоро смогут появиться в аптеках. Долгих вам лет жизни без боли!

Работа выполнена при поддержке Российского научного фонда (проект № 14-24-00118).

Литература
. Palermo N. N., Brown H. K., Smith D. L. Selective neurotoxic action of capsaicin on glomerular C-type terminals in rat substantia gelatinosa // Brain Res. 1981. V. 208. P. 506–510.
. O’Neill J., Brock C., Olesen A. E. et al.