Тепловая электростанция, вырабатывающая электрич. энергию и теплоту, отпускаемую потребителям в виде пара и горячей воды. Использование отра-бот. теплоты паровой турбины является отличит, особенностью ТЭЦ и наз. теплофикация. Комбиниров. произ-во энергии двух видов способствует более экономичному использованию топлива по сравнению с его использованием при раздельной выработке электроэнергии на конденсац. электростанциях (ГРЭС) и тепловой энергии в котельных установках. Замена мелких котельных централизованной системой теплоснабжения способствует экономии топлива, снижению загрязнения воздушного бассейна, улучшению сан. обстановки.

Исходный источник энергии на теплоэлектроцентрали - органич. топливо (на паротурбинных и газотурбинных ТЭЦ) либо расщепляющееся (ядерное) топлию (иа АТЭЦ). Наиболее распространены паротурбинные ТЭЦ. Различают ТЭЦ пром. типа - для снабжения теплотой предприятий и отопит; типа - для обогрева и снабжения горячей водой жилых и обществ, зданий. Отопление от теплоэлектроцентрали эко-

номичнее, чем от индивид, и даже цент-

рализов. котельных, т.к. на ТЭЦ сетевая во

да подогревается отработавшим паром,

темп-pa к~рого немногим выше темп-ры се

тевой воды. Теплота от пром. ТЭЦ передает

ся на расстояние неск. км (преимуществен

но паром), от отопит. - до 20-30 км (горя

чей водой). Осн. оборудование паро

турбинных ТЭЦ - турбоагрегаты,

преобразующие энергию рабочего тела

(пара) в электрич. энергию, и котлоагрега

ты, вырабатывающие пар для турбин.

В состав турбоагрегата входят паровая турбина и

синхронный генератор. Паровые турбины, используемые на ТЭЦ, наз. теплофикационными. Отобр. пар используют для производ. и отопит, нужд потребителей, для собств. нужд ТЭС (на подогрев питательной воды, ее термин, дегазацию в деаэраторах, питание эжекционных установок, конденсаторов и т.д.). Место отбора (ступень теплофикац. паровой турбины) выбирают взависимости оттребуемых параметров пара. Отработ. теплоту теплофикац. турбины с противодавлением используют полностью для нужд произ-ва или отопит. системы. Однако электрич. мощность, развиваемая такими турбинами, зависит от тепловой нагрузки, и при отсутствии последней (напр., в летнее время на отопительных теплоэлектроцентралях) они не вырабатывают электрич. мощности. Поэтому турбины с противодавлением применяют при достаточно равномерной теплотой нагрузке, обеспеч. иа все время действия ТЭЦ (т.е. преимущественно на пром. ТЭЦ). Работают они обычно параллельно с конденсац. теплофикац. паровой турбиной. У теплофикац. турбины с конденсацией и отбором (шш отборами) пара для снабжения теплотой потребителей используется лишь пар отборов, а теплота конденсац. потока пара отдается охлаждающей воде и теряется. Для сокращения потерь теплоты такие турбины большую часть времени должны работать по "тепловому" графику, т.е. с миним. пропуском пара в конденсатор. Паровые турбины с конденсацией и отбором пара получили преимущественное распространение на ТЭЦ как универсальные по возможным режимам работы. Их использование позволяет регулировать тепловую и электрич. нагрузки практически независимо одна от др.; в частном случае при поииж. тепловых нагрузках или при их отсутствии ТЭЦ может работать по "электрическому" графику с необходимой полной или почти полной электрич. мощностью. Электрич. мощность теплофикац. турбин в отличие от конденсац. выбирают не по заданной шкале мощностей, а по кол-ву расходуемого или свежего пара. Именно по этому параметру унифицированы крупные теплофикац. турбоагрегаты. Тепловая нагрузка на отопит. ТЭЦ в течение года неравномерна. Для снижения затрат на осн. энер-гетич. оборудование часть теплоты (40- 50%) в периоды повыш. нагрузки подают потребителям от пиковых водогрейных котлов. Долю теплоты, отпускаемой осн. энер-гетич, оборудованием при наибольшей нагрузке, определяет коэфф. теплофикации ТЭЦ. Подобным же образом можно покрывать пики тепловой (паровой) пром. нагрузки пиковыми паровыми котлами среднего давления. Теплота может отпускаться по двум схемам: при открытой - пар от турбин направляют непосредственно к потребителям; при закрытой - теплоту к теплоносителю подводят через теплообменники. Выбор схемы в значит, мере определяется водным режимом ТЭЦ.

На ТЭЦ используют твердое, жидкое котельное или газообразное топливо. Вследствие близости ТЭЦ к нас. пунктам на них стремятся применять мазут и особенно газ, менее загрязняющие атмосферу выбросами. ТЭЦ обычно отстоят от источников во-доснабженияназначит. расстояниях, поэтому на большинстве из них применяют оборотную систему водоснабжения с искусств. охладителями - градирнями. Прямоточное водоснабжение на теплоэлектроцентрали встречается редко. В качестве ТЭЦ могут работать также газотурбинные (для привода электрич. генераторов используют, газовые турбины), парогазовые (оснащ. паротурбинными и газотурбинными агрегатами) электростанции и АЭС. В нашей стране ТЭЦ - основное производственное звено в системе цент-рализов. теплоснабжения.

Снабжение населения теплом и электроэнергией является одной из основных задач государства. Кроме того, без выработки электричества невозможно представить себе развитую производящую и перерабатывающую промышленность, без которой экономика страны не может существовать в принципе.

Одним из способов решения проблемы нехватки энергии является строительство ТЭЦ. Расшифровка этого термина довольно проста: это так называемая теплоэлектроцентраль, являющаяся одной из наиболее распространенных разновидностей тепловых электростанций. В нашей стране они весьма распространены, так как работают на органическом ископаемом топливе (уголь), к характеристикам которого предъявляют весьма скромные требования.

Особенности

Вот что такое ТЭЦ. Расшифровка понятия вам уже знакома. Но какие же особенности имеет данная разновидность электростанций? Ведь неслучайно же их выделяют в отдельную категорию!?

Дело в том, что они вырабатывают не только электроэнергию, но и тепло, которое подается потребителям в виде горячей воды и пара. Нужно заметить, что электричество является побочным продуктом, так как пар, который подается в системы отопления, сперва вращает турбины генераторов. Комбинирование двух предприятий (котельной и электростанции) хорошо тем, что удается значительно сократить потребление топлива.

Впрочем, это же приводит к довольно незначительному «ареалу распространения» ТЭЦ. Расшифровка проста: так как от станции подается не только электричество, которое с минимальными потерями можно транспортировать на тысячи километров, но и нагретый теплоноситель, их нельзя располагать на значительном удалении от населенного пункта. Неудивительно, что практически все ТЭЦ построены в непосредственной близости от городов, жителей которых они отапливают и освещают.

Экологическое значение

Благодаря тому, что при постройке такой электростанции удается избавиться от многих старых городских котельных, которые играют чрезвычайно негативную роль в экологическом состоянии района (огромное количество копоти), чистоту воздуха в городе порой удается повысить на порядок. Кроме того, новые ТЭЦ позволяют ликвидировать завалы мусора на городских свалках.

Новейшее очистительное оборудование позволяет эффективно очищать выброс, а энергетическая эффективность такого решения оказывается чрезвычайно велика. Так, выделение энергии от сжигания тонны нефти идентично тому ее объему, которое выделяется при утилизации двух тонн пластика. А уж этого «добра» хватит на десятки лет вперед!

Чаще всего строительство ТЭЦ предполагает использование ископаемого топлива, о чем мы уже говорили выше. Впрочем, в последние годы планируется создание которые будут монтироваться в условиях труднодоступных регионов Крайнего Севера. Так как подвоз топлива туда исключительно затруднен, атомная энергетика является единственным надежным и постоянным источником энергии.

Какими они бывают?

Бывают ТЭЦ (фото которых есть в статье) промышленные и «бытовые», отопительные. Как несложно догадаться из названия, промышленные электростанции обеспечивают электричеством и теплом крупные производственные предприятия.

Зачастую строятся еще на этапе возведения завода, составляя вместе с ним единую инфраструктуру. Соответственно, «бытовые» разновидности возводятся неподалеку от спальных микрорайонов города. В промышленных передается в виде горячего пара (не больше 4-5 км), в случае отопительных - при помощи горячей воды (20-30 км).

Сведения об оборудовании станций

Основным оборудованием этих предприятий являются турбинные агрегаты, которые переводят механическую энергию в электричество, и котлы, ответственные за выработку пара, который вращает маховики генераторов. В состав турбинного агрегата входит как сама турбина, так и синхронный генератор. Трубины с противодавлением 0,7—1,5 Мн/м2 ставят на те ТЭЦ, которые снабжают теплом и энергией промышленные объекты. Модели же с давлением 0,05—0,25 Мн/м2 служат для обеспечения бытовых потребителей.

Вопросы КПД

В принципе, все выработанное тепло можно использовать полностью. Вот только количество электроэнергии, которое вырабатывается на ТЭЦ (расшифровка этого термина вам уже известна), напрямую зависит от тепловой нагрузки. Проще говоря, в весенне-летний период ее выработка снижается едва ли не до нуля. Таким образом, установки с противодавлением используются только для снабжения промышленных мощностей, у которых величина потребления более-менее равномерна на протяжении всего периода.

Установки конденсирующего типа

В этом случае для снабжения потребителей теплом используется лишь так называемый «пар отбора», а все остальное тепло зачастую попросту теряется, рассеиваясь в окружающей среде. Чтобы снизить потери энергии, такие ТЭЦ должны работать с минимальным выпуском тепла в конденсирующую установку.

Впрочем, еще со времен СССР строятся такие станции, в которых конструктивно предусмотрен гибридный режим: они могут работать как обычные конденсационные ТЭЦ, но их турбинный генератор вполне допускает функционирование в режиме противодавления.

Универсальные разновидности

Неудивительно, что именно установки с конденсацией пара получили максимальное распространение в силу своей универсальности. Так, только они дают возможность практически независимо регулировать электрическую и тепловую нагрузку. Даже если тепловой нагрузки вовсе не предвидится (в случае особенно жаркого лета) население будет снабжаться электроэнергией по прежнему графику (Западная ТЭЦ в Петербурге).

«Тепловые» разновидности ТЭЦ

Как вы уже могли понять, выработка тепла на такого рода электростанциях отличается крайней неравномерностью на протяжении года. В идеальном случае около 50% горячей воды или пара идет на обогрев потребителей, а весь остальной теплоноситель используется для выработки электричества. Именно так работает Юго-Западная ТЭЦ в Северной столице.

Отпуск тепла в большинстве случаев выполняется по двум схемам. Если используется открытый вариант, то горячий пар от турбин идет непосредственно к потребителям. В случае если была выбрана закрытая схема работы, теплоноситель подается после прохождения теплообменников. Выбор схемы определяется исходя из многих факторов. В первую очередь учитывается расстояние от обеспечиваемого теплом и электричеством объекта, количество населения и сезон. Так, Юго-Западная ТЭЦ в Петербурге работает по закрытой схеме, так как она обеспечивает большую эффективность.

Характеристики используемого топлива

Может использоваться твердое, жидкое и Так как ТЭЦ зачастую строятся в непосредственной близости от крупных населенных пунктов и городов, зачастую приходится использовать достаточно ценные его виды, газ и мазут. Применение же в качестве такового угля и мусора в нашей стране достаточно ограниченно, так как далеко не на всех станциях установлено современное эффективное воздухоочистительное оборудование.

Чтобы очистить выхлоп установок, используются специальные уловители твердых частиц. Чтобы рассеивать твердые частицы в достаточно высоких слоях атмосферы, строят трубы высотой в 200—250 метров. Как правило, все теплоэлектроцентрали (ТЭЦ) стоят на достаточно большом расстоянии от источников водоснабжения (реки и водохранилища). А потому используется искусственные системы, включающие в свой состав градирни. Прямоточное снабжение водой встречается крайне редко, в весьма специфичных условиях.

Особенности газовых станций

Особняком стоят газовые ТЭЦ. Теплоснабжение потребителей осуществляется не только за счет энергии, которая вырабатывается при сжигании но и при утилизации тепла газов, которые при этом образуются. КПД таких установок чрезвычайно высоко. В некоторых случаях в качестве ТЭЦ могут использоваться и атомные станции. Это особенно распространено в некоторых арабских странах.

Там эти станции играют сразу две роли: обеспечивают снабжение населения электроэнергией и технической водой, так как попутно исполняют функции А сейчас рассмотрим основные ТЭЦ нашей страны и ближнего зарубежья.

Юго-Западная, Санкт-Петербург

В нашей стране известностью пользуется Западная ТЭЦ, которая расположена в Санкт-Петербурге. Зарегистрирована как ОАО «Юго-Западная ТЭЦ». Строительство этого современного объекта преследовало сразу несколько функций:

  • Компенсация сильного дефицита тепловой энергии, который мешал интенсификации программы жилищного строительства.
  • Повышение надежности и энергетической эффективности городской системы в целом, так как именно с этим аспектом имел проблемы Санкт-Петербург. ТЭЦ позволила частично решить эту проблему.

Но эта станция известна еще и тем, что одной из первых в России стала соответствовать строжайшим экологическим требованиям. Для нового предприятия городское правительство выделило площадь более 20 Га. Дело в том, что под строительство была отведена резервная площадь, оставшаяся от Кировского района. В тех краях был старый сборник золы от ТЭЦ-14, а потому район был не пригоден для строительства жилья, но чрезвычайно удачно расположен.

Запуск состоялся в конце 2010 года, причем на церемонии присутствовало практически все руководство города. В строй были введены две новейшие автоматические котельные установки.

Мурманская

Город Мурманск известен как база нашего флота на Балтийском море. Но еще он характеризуется крайней суровостью климатических условий, что накладывает определенные требования на его энергетическую систему. Неудивительно, что Мурманская ТЭЦ во многом является совершенно уникальным техническим объектом даже в масштабах всей страны.

Она была введена в эксплуатацию еще в 1934 году, и с тех пор продолжает исправно снабжать жителей города теплом и электроэнергией. Впрочем, в первые пять лет Мурманская ТЭЦ являлась обычной электростанцией. Первые 1150 метров теплотрассы были проложены только в 1939 году. Дело в запущенной Нижне-Туломской ГЭС, которая практически полностью перекрывала потребности города в электричестве, а потому появилась возможность высвободить часть тепловой выработки для отопления городских домов.

Станция характерна тем, что весь год работает в сбалансированном режиме, так как ее тепловая и «энергетическая» выработки приблизительно равны. Впрочем, в условиях полярной ночи ТЭЦ в некоторые пиковые моменты начинает использовать большую часть топлива именно для выработки электроэнергии.

Новополоцкая станция, Белоруссия

Проектирование и строительство этого объекта началось в августе 1957 года. Новая Новополоцкая ТЭЦ должна была решить вопрос не только теплоснабжения города, но и обеспечения электричеством строившегося в том же районе нефтеперерабатывающего завода. В марте 1958 года проект был окончательно подписан, одобрен и утвержден.

Первую очередь ввели в эксплуатацию в 1966 году. Вторая была запущена в 1977 году. Тогда же Новополоцкая ТЭЦ была в первый раз модернизирована, ее пиковую мощность увеличили до 505 МВт, а чуть позже заложили третью очередь строительства, завершенную в 1982 году. В 1994 г. станция была переведена на сжиженный природный газ.

К настоящему моменту в модернизацию предприятия уже вложено порядка 50 миллионов американских долларов. Благодаря столь внушительным денежным вливаниям предприятие не только было полностью переведено на газ, но и получило огромное количество совершенно нового оборудования, которое позволит станции прослужить еще десятки лет.

Выводы

Как ни странно, но на сегодняшний день именно устаревшие ТЭЦ являются действительно универсальными и перспективными станциями. Используя современные нейтрализаторы и фильтры, нагревать воду можно, сжигая практически весь мусор, который производит населенный пункт. При этом достигается тройная выгода:

  • Разгружаются и расчищаются свалки.
  • Город получает дешевую электроэнергию.
  • Решается проблема с отоплением.

Кроме того, в прибрежных районах вполне реально строительство ТЭЦ, которые одновременно будут являться опреснителями морской воды. Такая жидкость вполне пригодна для полива, для животноводческих комплексов и промышленных предприятий. Словом, настоящая технология будущего!

ТЭЦ - тепловая электростанция, которая производит не только электроэнергию, но и дает тепло в наши дома зимой. На примере Красноярской ТЭЦ посмотрим как работает почти любая теплоэлектростанция.

В Красноярске есть 3 теплоэлектроцентрали, суммарная электрическая мощность которых всего 1146 МВт. На заглавной фотографии видно 3 дымовые трубы ТЭЦ-3, высота самой высокой из них - 275 метров, вторая по высоте - 180 метров.

Сама аббревиатура ТЭЦ подразумевает собой, что станция вырабатывает не только электричество, но и тепло (горячая вода, отопление), причем, выработка тепла возможно даже более приоритетна в нашей известной суровыми зимами стране.

Упрощенно принцип работы ТЭЦ можно описать следующим образом.

Всё начинается с топлива. В роли топлива на разных электростанциях могут выступать уголь, газ, торф. В нашем случае это бурый уголь с Бородинского разреза, расположенного в 162 км от станции. Уголь привозят по железной дороге. Часть его складируется, другая часть идёт по конвейерам в энергоблок, где сам уголь сначала измельчается до пыли и потом подаётся в камеру сгорания - паровой котёл.

Вагоноопрокидыватель, с помощью которого уголь высыпается в бункера:

Здесь уголь измельчается и попадает в «топку»:

Паровой котел - это агрегат для получения пара с давлением выше атмосферного из непрерывно поступающей в него питательной воды. Происходит это за счет теплоты, выделяющейся при сгорании топлива. Сам котёл выглядит довольно внушительно. На Красноярской ТЭЦ-3 высота котла 78 метров (26-этажный дом), а весит он более 7 000 тонн! Производительность котла - 670 тонн пара в час:

Вид сверху:

Невероятное количество труб:

Отчётливо виден барабан котла . Барабан представляет собой цилиндрический горизонтальный сосуд, имеющий водяной и паровой объемы, которые разделяются поверхностью, называемой зеркалом испарения:

Остывшие дымовые газы (примерно 130 градусов), выходят из топки в электрофильтры. В электрофильтрах происходит очистка газов от золы, и очищенный дым уходит в атмосферу. Эффективная степень очистки дымовых газов составляет 99.7%.

На фотографии те самые электрофильтры:

Проходя через пароперегреватели пар нагревается до температуры 545 градусов и поступает в турбину, где под его давлением вращается ротор турбогенератора и, соответственно, вырабатывается электроэнергия.

Недостатком ТЭЦ является то, что они должны быть построены недалеко от конечного потребителя. Прокладка теплотрасс стоит огромных денег.

На Красноярской ТЭЦ-3 используется прямоточная система водоснабжения, то есть воду для охлаждения конденсатора и использования в котле берут прямо из Енисея, но перед этим она проходит очистку. После использования вода возвращается по каналу обратно в Енисей.



Турбогенератор:

Теперь немного о самой Красноярской ТЭЦ-3.

Строительство станции началось ещё в далёком 1981 году, но, как у нас в России бывает, из-за и кризисов построить ТЭЦ вовремя не получилось. С 1992 г до 2012 г станция работала как котельная - нагревала воду, но электричество вырабатывать научилась только 1-го марта прошлого года. На ТЭЦ работает около 560 человек.

Диспетчерская:

Еще на Красноряской ТЭЦ-3 функционируют 4 водогрейных котла:

Глазок в топке:

А это фото снято с крыши энергоблока. Большая труба имеет высоту 180м, та что поменьше - труба пусковой котельной:

Кстати, самая высокая дымовая труба в мире находится на электростанции в Казахстане в городе Экибастуз. Ее высота - 419.7 метров. Это она:

Трансформаторы:

Внутри здания ЗРУЭ (закрытое распределительное устройство с элегазовой изоляцией) на 220 кВ:

Общий вид распределительного устройства:

На этом всё. Спасибо за внимание.

Проведём экскурсию по Чебоксарской ТЭЦ-2, посмотрим, как электричество и тепло вырабатываются:

Напомню, кстати, что труба - самое высокое промышленное сооружение в Чебоксарах. Аж 250 метров!

Начнём с общих вопросов, к которым относится в первую очередь безопасность.
Разумеется, ТЭЦ, как и ГЭС, предприятие режимное, и просто так туда не пускают.
А если уж пустили, хоть даже на экскурсию, то инструктаж по технике безопасности пройти всё равно придётся:

Ну, нам это не в диковинку (как и сама ТЭЦ не в диковинку, я работал там лет 30 назад;)).
Да, ещё одно жёсткое предупреждение, не могу пройти мимо:

Технология

Главным рабочим веществом на всех тепловых электростанциях является, как ни странно, вода.
Потому что она легко превращается в пар и обратно.
Технология у всех одинакова: надо получить пар, который будет вращать турбину. На оси турбины помещается генератор.
В атомных электростанциях вода разогревается за счёт выделения тепла при распаде радиоактивного топлива.
А в тепловых - за счёт сжигания газа, мазута и даже, до недавних пор, угля.

Куда девать отработанный пар? Однако, обратно в воду и снова в котёл!
А куда девать тепло отработанного пара? Да на подогрев воды, поступающей в котёл - для повышения кпд всей установки в целом.
И на подогрев воды в теплосети и водопроводе (горячая вода)!
Так что в отопительный сезон из тепловой станции извлекается двойная польза - электричество и тепло. Соответственно, такое комбинированное производство и называется ТЭЦ (теплоэлектроцентраль).

Но летом всё тепло израсходовать с пользой не удаётся, поэтому пар, вышедший из турбины, охлаждается, превращаясь в воду, в градирнях, после чего вода возвращается в замкнутый производственный цикл. А в тёплых бассейнах градирен ещё и рыбу разводят;)

Чтобы не изнашивались теплосети и котёл, вода проходит специальную подготовку в химическом цехе:

А по всему замкнутому кругу воду гоняют циркуляционные насосы:

Наши котлы могут работать как на газе (жёлтые трубопроводы), так и на мазуте (чёрные). С 1994 работают на газе. Да, котлов у нас 5 штук!
Для горения в горелки необходима подача воздуха (синие трубопроводы).
Вода кипит, и пар (паропроводы красного цвета) проходит через специальные теплообменники - пароперегреватели, которые повышают температуру пара до 565 градусов, а давление, соответственно, до 130 атмосфер. Это вам не скороварка на кухне! Одна маленькая дырочка в паропроводе обернётся большой аварией; тонкая струя перегретого пара режет металл, как масло!

И вот такой пар уже подаётся на турбины (в больших станциях несколько котлов могут работать на общий паровой коллектор, от которого питаются несколько турбин).

В котельном цехе всегда шумно, потому что горение и кипение - весьма бурные процессы.
А сами котлы (ТГМЕ-464) представляют собой грандиозные сооружения высотой с двадцатиэтажный дом, и показать их целиком можно только на панораме из множества кадров:

Ещё один ракурс на подвал:

Пульт управления котла выглядит так:

На дальней стене располагается мнемосхема всего техпроцесса с лампочками, индицирующими состояние задвижек, классические приборы с самописцами на бумажной ленте, табло сигнализации и другие индикаторы.
А на самом пульте классические кнопки и ключи соседствуют с компьютерным дисплеем, где крутится система управления (SCADA). Здесь же есть самые ответственные выключатели, защищённые красными кожухами: "Останов котла" и "Главная паровая задвижка" (ГПЗ):

Турбины

Турбин у нас 4.
Они имеют очень сложную конструкцию, чтобы не пропустить ни малейшего кусочка кинетической энергии перегретого пара.
Но снаружи ничего не видно - всё закрыто глухим кожухом:

Серьёзный защитный кожух необходим - турбина вращается с высокой скоростью 3000 оборотов в минуту. Да ещё по ней проходит перегретый пар (выше говорил, как он опасен!). А паропроводов вокруг турбины множество:

В этих теплообменниках отработанным паром подогревается сетевая вода:

Кстати, на фото у меня самая старая турбина ТЭЦ-2, так что не удивляйтесь брутальному виду устройств, которые будут показаны ниже:

Вот это механизм управления турбиной (МУТ), который регулирует подачу пара и, соответственно, управляет нагрузкой. Его раньше крутили вручную:

А это Стопорный клапан (его надо долго вручную взводить после того, как он сработал):

Малые турбины состоят из одного так называемого цилиндра (набора лопастей), средние - из двух, большие - из трёх (цилиндры высокого, среднего и низкого давления).
С каждого цилиндра пар уходит в промежуточные отборы и направляется в теплообменники - подогреватели воды:

А в хвосте турбины должен быть вакуум - чем он лучше, тем выше кпд турбины:

Вакуум образуется за счёт конденсации остатков пара в конденсационной установке.
Вот мы и прошлись по всему пути воды на ТЭЦ. Обратите внимание также на ту часть пара, которая идёт на подогрев сетевой воды для потребителя (ПСГ):

Ещё один вид с кучей контрольных точек. Не забываем, что контролировать на турбине необходимо кучу давлений и температур не только пара, но и масла в подшипниках каждой её части:

Да, а вот и пульт. Он обычно находится в той же комнате, что и у котлов. Несмотря на то, что сами котлы и турбины стоят в разных помещениях, управление котлотурбинным цехом нельзя разделять на отдельные кусочки - слишком всё связано перегретым паром!

На пульте мы видим пару средних турбин с двумя цилиндрами, кстати.

Автоматизация

В отличие от , процессы на ТЭЦ более быстрые и ответственные (кстати, все помнят слышный во всех краях города громкий шум, похожий на самолётный? Так это изредка срабатывает паровой клапан, стравливая чрезмерное давление пара. Представьте, как это слышится вблизи!).
Поэтому автоматизация здесь пока запаздывает и в основном ограничивается сбором данных. А на пультах управления мы видим сборную солянку различных SCADA и промышленных контроллеров, занимающихся локальным регулированием. Но процесс идёт!

Электричество

Ещё раз посмотрим общий вид турбинного цеха:

Обратите внимание, слева под жёлтым кожухом - электрические генераторы.
Что происходит с электричеством дальше?
Оно отдаётся в федеральные сети через ряд распределительных устройств:

Электрический цех - очень непростое место. Достаточно взглянуть на панораму пульта управления:

Релейная защита и автоматика - наше всё!

На этом обзорную экскурсию можно завершить и всё-таки сказать пару слов про насущные проблемы.

Тепло и коммунальные технологии

Итак, мы выяснили, что ТЭЦ даёт электричество и тепло. И то, и другое, разумеется, поставляется потребителям. Теперь нас, главным образом, будет интересовать тепло.
После перестройки, приватизации и разделения всей единой советской промышленности на отдельные кусочки во многих местах получилось так, что электростанции остались в ведомстве Чубайса, а городские теплосети стали муниципальными. И на них образовался посредник, который берёт деньги за транспортировку тепла. А как эти деньги тратятся на ежегодный ремонт изношенных на 70% теплосетей, вряд ли нужно рассказывать.

Так вот, из-за многомиллионных долгов посредника "НОВЭК" в Новочебоксарске ТГК-5 уже перешла на прямые договора с потребителями.
В Чебоксарах пока этого нет. Более того, чебоксарские «Коммунальные технологии» на сегодня проект развития своих котельных и теплосетей аж на 38 миллиардов (ТГК-5 справилась бы всего за три).

Все эти миллиарды так или иначе будут включены в тарифы на тепло, которые устанавливает городская администрация "из соображений социальной справедливости". Между тем, сейчас себестоимость тепла, вырабатываемого ТЭЦ-2, в 1.5 раза меньше, чем на котельных КТ. И такое положение должно сохраниться и в будущем, потому что чем крупнее электростанция, тем она эффективнее (в частности, меньше эксплуатационных затрат + окупаемость тепла за счёт производства электроэнергии).

А что с точки зрения экологии?
Безусловно, одна большая ТЭЦ с высокой трубой лучше в экологическом плане, чем десяток мелких котельных с маленькими трубами, дым из которых практически останется в городе.
Самым же плохим в смысле экологии является ныне популярное индивидуальное отопление.
Маленькие домашние котлы не обеспечивают такой полноты сгорания топлива, как большие ТЭЦ, да и все выхлопные газы остаются не просто в городе, а буквально над окнами.
Кроме того, мало кто задумывается о повышенной опасности дополнительного газового оборудования, стоящего в каждой квартире.

Какой выход?
Во многих странах при центральном отоплении используются поквартирные регуляторы, которые позволяют экономнее потреблять тепло.
К сожалению, при нынешних аппетитах посредников и изношенности теплосетей преимущества центрального отопления сходят на нет. Но всё-таки, с глобальной точки зрения, индивидуальное отопление более уместно в коттеджах.

Другие посты о промышленности: