: Каждому известно, что все механизмы и системы подвержены моральному износу. Самое главное, чтобы время эксплуатации этих устройств было как...

  • : Начиная с первых дней работы компания «Politeknik» предлагает проектирование и изготовление на заказ компенсаторы всех типов (в т.ч. высоког...
  • : 13 июля 2015 года наша компания осуществила поставку большой партии компенсаторов сильфонных универсальных карданного типа Dn900 mm и Dn600 ...
  • : Любая трубопроводная система в той или иной степени подвержена температурным воздействиям, перепадам давления и различного рода вибрациям, в...
  • : Расчет необходимого сильфонного компенсатора Сильфонные компенсаторы должны устанавливаться только на прямолиней­ных участках трубопроводов...
  • Свежие записи

    Статьи

    • : Глебович С. А. Анализ применения сильфонных компенсаторов // Технические науки в России и за рубежом: материалы VII Междунар. науч...
    • : Основная причина колебаний трубопроводов и самих машин нефтегазовых сооружений является аэродинамические и акустические силы дейст...
    • : Максимов Ю.И., технический директор ООО «Полимерстрой» (г. Оренбург) Представляемое автором предприятие на протяжении уже десят...
    • : Журнал "Новости теплоснабжения", № 7 (11) июль 2001, С. 24 – 27, www.ntsn.ru Х.С. Шакурзьянов, генеральный директор, Ю.Д. Власе...
    • : Е.В. Кузин, директор ООО «АТЕКС-ИНЖИНИРИНГ», г. Иркутск; В.В. Логунов, заместитель генерального директора, В.Л. Поляков, гла...
    • : Е.В. Кузин, директор, ООО «АТЕКС-инжиниринг», г. Иркутск; В.В. Логунов, заместитель генерального директора, В.Л. Поляков, главны...
    • : Классификация трубопроводной арматуры Классификация трубопроводной арматуры осуществляется по различным признакам. По целевому...
    • : Такая характеристика, как пропускная способность трубы, является метрической. Она предоставляет возможность осуществить расчет соо...
    • : Дано: 24-х этажный жилой дом с двухтрубной системой отопления в г. Москве. Рабочее давление Р раб =10 атм. Высота этажа Н=...

    Статистика

    Сильфонные компенсаторы должны устанавливаться только на прямолиней­ных участках трубопроводов, ограниченных неподвижными опорами. Между неподвижными опорами допускается размещать только один компенсатор. Расстояние от торца патрубка компенсатора до опоры должно быть не более 1,5 Ду.

    Примеры схем размещения компенсаторов, направляющих и непод­вижных опор приведены на схемах:

    Расчет температурного удлинения

    Расчет температурного удлинения проводится по следующей формуле:

    Расчет длины предварительного растяжения осевых компенсаторов

    Максимальное расстояние между неподвижными опорами труб определяется по формуле:

    • 0.9 — коэффициент запаса, учитывающий неточности расчета и погрешности монтажа;
    • — компенсирующая способность компенсатора, мм;
    • а — средний коэффициент линейного расширения трубной стали при нагреве от 0°С до t°C, мм/м °С;
    • t — расчетная температура сетевой воды в подающем трубо­проводе, °С;

    tpo- расчетная температура наружного воздуха для проектиро­вания систем отопления, принимаемая равной средней тем­пературе воздуха наиболее холодной пятидневки по главе СНиП «Строительная климатология и геофизика», ° С.

    В тепловых сетях широко применяются сальниковые, П - образные и сильфонные (волнистые) компенсаторы. Компенсаторы должны иметь достаточную компенсирующую способность для восприятия температурного удлинения участка трубопровода между неподвижными опорами, при этом максимальные напряжения в радиальных компенсаторах не должны превышать допускаемых (обычно 110 МПа).

    Тепловое удлинение расчетного участка трубопровода
    , мм, определяют по формуле

    (81)

    где
    - средний коэффициент линейного расширения стали,

    (для типовых расчетов можно принять
    ),

    - расчетный перепад температур, определяемый по формуле

    (82)

    где - расчетная температура теплоносителя, о С;

    - расчетная температура наружного воздуха для проектирования отопления, о С;

    L - расстояние между неподвижными опорами, м (см. приложение №17).

    Компенсирующую способность сальниковых компенсаторов уменьшают на величину запаса - 50 мм.

    Реакция сальникового компенсатора - сила трения в сальниковой набивкеопределяется по формуле

    где - рабочее давление теплоносителя, МПа;

    - длина слоя набивки по оси сальникового компенсатора, мм;

    - наружный диаметр патрубка сальникового компенсатора, м;

    - коэффициент трения набивки о металл, принимается равным 0,15.

    При подборе компенсаторов их компенсирующая способность и технические параметры могут быть определены по приложению.

    Осевая реакция сильфонных компенсаторов складывается из двух слагаемых:

    (84)

    где - осевая реакция, вызываемая деформацией волн, определяемая по формуле

    (85)

    здесь l - температурное удлинение участка трубопровода, м;

     - жесткость волны, Н/м, принимаемая по паспорту компенсатора;

    n - количество волн (линз).

    - осевая реакция от внутреннего давления, определяемая по формуле

    (86)

    здесь - коэффициент, зависящий от геометрических размеров и толщины стенки волны, равный в среднем 0.5 - 0.6;

    D и d – соответственно наружный и внутренний диаметры волн, м;

    - избыточное давление теплоносителя, Па.

    При расчете самокомпенсации основной задачей является определение максимального напряженияу основания короткого плеча угла поворота трассы, которое определяют для углов поворотов 90 о поформуле

    (87)

    для углов более 90 о, т.е. 90+, по формуле

    (88)

    где l - удлинение короткого плеча, м;

    l - длина короткого плеча, м;

    Е - модуль продольной упругости, равный в среднем для стали 2· 10 5 МПа;

    d - наружный диаметр трубы, м;

    - отношение длины длинного плеча к длине короткого.

    При расчетах углов на самокомпенсацию величина максимального напряжения не должна превышать [] = 80 МПа.

    При расстановке неподвижных опор на углах поворотов, используемых для самокомпенсации, необходимо учитывать, что сумма длин плеч угла между опорами не должна быть более 60% от предельного расстояния для прямолинейных участков. Следует учитывать также, что максимальный угол поворота, используемый для самокомпенсации, не должен превышать 130 о.

    Сильфонный компенсатор предназначен для устранения деформаций трубопровода, он способствует более гибкой работе системы и прямо влияет на долговечность всей конструкции. Использование сильфонных компенсаторов стало возможным в новом веке с применением новых расчетных технологий и комплексов.

    Для того чтобы изделия было годным к употреблению, его нужно правильно спроектировать, расчет сильфонного компенсатора – очень важный этап в его создании.

    Этапы проектировки

    Обычно расчетом трубопроводной арматуры занимается не один человек, а целый отдел. Только комплексная работа специалистов позволит учесть все нюансы и избежать ошибок и недочетов в работе. Какая бы ни была программа для работы с данными, никто не отменял человеческий фактор, поэтому проверять данные следует на всех этапах проектировки. Если брать в рассмотрение сильфонные компенсаторы, то можно условно разделить их расчет на несколько этапов:

    • Расчет и проектировка сильфона - основной рабочей части компенсатора.
    • Выбор материалов для изготовления устройства, в зависимости от технических характеристик теплоносителя, условий эксплуатации.
    • Расчет конструкции компенсатора, проработка оптимальной формы устройства.

    Изначально рассматривается сам сильфон компенсатора, количество циклов его сработки, технические условия его работы и общая механика действий. Сильфон должен обеспечить нужный запас хода, чтобы устройство проработало отведенное время без поломок и нештатных ситуаций. Важным моментом является расчет компенсирующей способности сильфона, которая должна соответствовать заданным параметрам.

    Далее подбираются материалы, из которого будет произведен сильфон и сам компенсатор. В зависимости от сферы применения, рабочей среды и окружающих условий, могут применяться самые разные сплавы. При этом сильфон всегда делается из нержавеющей легированной стали, а вот патрубки под приварку или фланцы, вполне могут быть выполнены из обычных сплавов. Хотелось бы упомянуть здесь и о таком понятии, как "северное исполнение", указывающее на сложные условия эксплуатации сильфонного компенсатора, а значит и материалы для его исполнения должны выдерживать такие нагрузки.


    Окончательным этапом расчета можно считать выбор конструкции самого компенсатора. Изделия могут быть разгруженные и неразгруженные, иметь патрубковое или фланцевое соединение, быть достаточно габаритным, либо иметь скромные размеры. Все нюансы должны быть учтены инженерами, проектирующими данное устройство.

    Результатом финального этапа расчета сильфонного компенсатора можно считать , на котором становится видна его конструкция, а так же указаны материалы для его создания. В дальнейшем для рабочих завода будут собраны все необходимые данные относительно производства, разработаны чертежи и схемы, а изделие будет изготовлено.


    Важные моменты

    Стоит отметить, что любые ошибки в работе конструкторского отдела в сфере проектирования сильфонного компенсатора, могут привести к нежелательным последствиям при его эксплуатации, которые могут не только способствовать выходу из строя трубопроводной системы, но и закончится серьезной аварией, катастрофой. Особое внимание конструкторы уделяют системам со взрывоопасными газами, нефтепродуктами, трубопроводам с повышенным давлением и высокой температурой теплоносителя.

    Поэтому, зачастую, вместо проектирования и расчета новых компенсаторов, довольствуются старыми, проверенными наработками, что по мнению многих специалистов в корне неверно, т.к. задачи, для которых нужен сильфонный компенсатор, могут сильно отличаться. Конечно, можно подобрать сильфонный компенсатор из базового списка изделий, но тогда совсем не будут учтены нюансы его работы. Стоит внимательно проанализировать все факторы: нужную компенсирующую способность и вид изделия, рабочую среду, место установки, необходимые технические элементы, возможность правильного монтажа и так далее. Вряд ли банальный подбор сильфонного компенсатора из списка изготавливаемых заводом сразу удовлетворит все требования, хотя такие моменты имеют место быть.


    Для заказчиков сильфонной арматуры, рекомендуем внимательно знакомиться с технической информацией по оборудованию, и сопоставлять с требуемыми условиями. Конечно, проконтролировать расчеты инженеров не получится, но хотя бы сопоставить параметры изделия с технической и проектной документацией своего объекта можно.

    В заключение стоит отметить, что процесс расчета и проектирования сильфонного компенсатора дело не быстрое. В зависимости от размеров технического отдела завода производителя, уровня профессионализма сотрудников, загруженности их работой и сложности изделия, подготовка первичной документации на сильфонный компенсатор может занять от нескольких дней, до нескольких недель. В этом плане подобрать устройство кажется проще, но на самом деле, это не лучший выход.

    Величина смещения (компенсирующая способность) компенсаторов, как правило, выражается комбинацией положительных и отрицательных числовых значений (±). Отрицательное (-) значение обозначает допустимое сжатие компенсатора, положительное (+) - его допустимое растяжение. Сумма абсолютных величин таких значений представляет собой полное смещение компенсатора. В большинстве случаев компенсаторы работают на сжатие, компенсируя температурное расширение трубопроводов, реже (охлажденные среды и криогенные продукты) - на растяжение.

    Предварительная растяжка при монтаже нужна для рационального использования полного смещения компенсатора в зависимости от характера работы трубопровода, условий монтажа и предотвращения возникновения стрессовых условий.

    Пиковые значения расширения трубопровода зависят от минимальной и максимальной температур его эксплуатации. Например, минимальная температура работы трубопровода Tmin = 0°С и максимальная Т тах = 100°С. Т.е. разница температур At = 100°C. При длине трубопровода L равной 90 м, максимальное значение его удлинения трубопровода AL составит 100 мм. Представим, что для установки на таком трубопроводе используются компенсаторы со смещением ±50 мм, т.е. с полным смещением 100 мм. Также представим, что температура окружающей среды на этапе их монтажа Т у равна 20°С. Характер работы компенсатора при таких условиях будет таким:

    • при 0°С - компенсатор будет растянут на 50 мм
    • при 100°С - компенсатор будет сжат на 50 мм
    • при 50°С - компенсатор будет находится в свободном состоянии
    • при 20°С - компенсатор будет растянут на 30 мм

    Следовательно, предварительная растяжка на величину 30 мм при монтаже (Т у = 20°С) обеспечит эффективную его работу. Когда температура поднимется от 20°С до 50°С при вводе в эксплуатацию трубопровода, компенсатор вернется в свободное (ненапряженное) состояние. При повышении температуры трубопровода от 50°С до 100°С, смещение компенсатора относительно свободного состояние в сторону сжатия составит расчетные 50 мм.

    Определение значения предварительного растяжения

    Примем длину трубопровода равную 33 метрам, максимальную/минимальную рабочую температуру +150°С /-20°С соответственно. При такой разнице температур коэффициент линейного расширения а составит 0,012 мм/м*°С.

    Максимальное удлинение трубопровода может быть рассчитано следующим образом:

    ΔL = α*L* Δt = 0,012 х 33 х 170 = 67 мм

    Значение предварительного растяжения PS определяется по формуле:

    PS = (ΔL/2) - ΔL(Ty-Tmin): (Tmax-Tmin)

    Таким образом, в процессе монтажа компенсатора его необходимо установить с предварительным растяжением PS равным 18 мм.

    На рис. 1 показано расстояние необходимое для монтажа компенсатора в линию трубопровода, определяемое как сумма значений длины компенсатора lq в свободном состоянии и предварительного растяжения PS.

    На рис. 2 показано, что при монтаже, с одной стороны компенсатор фиксируется фланцем или приваривается.