Введение

Полная обменная емкость анионита определяется при его нейтрализации раствором HCl или H 2 SO 4 в статических или динамических условиях и выражается в эквивалентах на 1г сухого или набухшего анионита.

Реакции обмена анионов / А-анионит/ имеют вид:

А. /OH/ +H /Cl = A.OH.Cl +H O;

A. /OH/ + H /SO = A.SO +2 H O .

Помимо обменной емкости к основным показателям пригодности анионита относят: обесцвечивающую способность, степень набухания, способность к старению, нерастворимость в воде и органических растворителях, простоту регенерации, термическую и механическую прочность.

Полная обменная емкость различных марок анионитов, используемых в сахарной промышленности, может быть 1 - 10 мг-экв/г. Применяемый для обесцвечивания сахарных растворов отечественный макропористый анионит АВ-17-2П имеет полную обменную емкость по 0,1 н. раствору HCl 3,8 мг-экв/г, а по 0,1 н. раствору NaCl 3,4 мг-экв/г.

Цель анализа - оценить качество анионита для обесцвечивания сахарных растворов.

Принцип метода анализа основан на титровании непоглощенного анионитом раствора кислоты 0,1 н. раствором NaOH.

Реактивы :

0,1 н. растворы HCl и NaOH.

Приборы и материалы:

Стеклянная колонка диаметром 18 мм, высотой 250 мм с оттянутым в нижней части концом, на который надевают резиновую трубку с винтовым зажимом;

Стеклянная воронка;

Мерная колба на 500 см 3 ;

Бюретка для титрования;

Химический стакан;

Анионообменная смола.

Ход определения

10г приготовленного для анализа анионита в ОН - форме переводят водой в стеклянную колонку диаметром 18 мм с тампоном из стеклянной ваты на дне, а избыток воды спускают через резиновую трубку с винтовым зажимом.

После этого через слой анионита в течение 30 мин равномерно пропускают 400 см 3 0,1 н. раствора HCl, поддерживая уровень раствора над слоем анионита равным 1 см. Затем его промывают двойным по объему анионита количеством воды. Фильтрат и промывные воды собирают в мерную колбу и доводят их объем до 500 см 3 . Отбирают из общего объема в стакан 50 см 3 и титруют 0,1 н. раствором NaOH.



Расчеты:

1. Для получения сравнимых результатов обменную емкость анионита выражают также, как и катионита через мг-экв/г сухого ионита.

Поэтому, если 1 г абсолютно сухого анионита поглотит

см 3 0,1 н. раствора HCl, а 1 см 3 этого раствора содержит 0,1 мг-экв/г, то полная обменная емкость анионита Е А может быть рассчитана из формулы

,

где E А - полная обменная емкость анионита, мг-экв/г абсолютно сухого ионита;

a - количество фильтрата, собранное для титрования, см 3 ;

V О – количество 0,1 н. раствора HCl, пропущенного через анионит, см 3 ;

V b - общее количество фильтрата, см 3 ;

g - количество сухого анионита, взятого для определения его емкости, г;

W – влажность анионита, %. Определяют методом высушивания в течение 3-х часов при 95-100˚С.

2. Емкость анионита может быть выражена и в процентах по HCl. В этом случае учитывают то, что 1 см 3 0,1 н. раствора HCl содержит 0,0036 г HCl, расчет E ведут по формуле

6.3. Регенерация ионообменных смол

Введение

Отработанные в рабочем цикле ионообменные смолы после их промывки водой подвергают регенерации (восстановлению).

Катиониты восстанавливают слабыми растворами HCl и H SO

K.Na + H /SO = K.H+ Na /SO ;

KNa + HCl = KH + NaCl.

Для восстановления анионитов применяются слабые растворы NaOH, KOH, NaCl и др.

A.OH.Cl + Na /OH = A./OH/ + Na /Cl .

В конце цикла регенерации кислотность регенерата из катионообменника или щелочность регенерата из анионообменника должны приближаться к кислотности и щелочности регенерационных растворов. Окончание регенерации устанавливают путем титрования.

Цель анализа - восстановить обменную емкость ионитов.

Принцип метода анализа основан на титровании регенерационных растворов из катионообменника 0,1 н. раствора NaOH, а из анионообменника - 0,1 н. раствором HCl.

Реактивы:

5%-ный раствор HCl;

4%-ный раствор NaOH;

0,1 н. раствор NaOH;

0,1 н. раствор HCl.

Приборы и материалы:

Стеклянные колонки с катионообменной смолой и анионообменной смолой.

Ход определения

После промывания смолы водой в колонках проводят регенерацию: катионита – 5%-ным раствором HCl, а анионита - 4%-ным раствором NaOH, пропуская их со скоростью 20 см 3 /мин.

Окончание регенерации катионита устанавливают титрованием его регенерационных растворов 0,1 н. раствором NaOH , а анионообменника – 0,1 н. раствором HCl.

После регенерации катионит отмывают водой до нейтральной или слабокислой реакции, а анионит – до нейтральной или слабощелочной реакции.

Контрольные вопросы

1. Что представляет собой ионный обмен?

2. Что такое ионообменные смолы?

3. Какие ионообменные смолы применяют в сахарном производстве?

4. Расскажите о статической и динамической обменной емкости ионитов?

5. Что определяет полная обменная емкость ионитов?

6. В каких единицах выражается полная обменная емкость?

7. С какой целью используют иониты в сахарном производстве?

8. На каком принципе основано определение полной обменной емкости ионитов?

9. Для чего проводят регенерацию ионообменных смол?

10. На каком принципе основано выполнение регенерации ионитов?

11. Как определяют окончание процесса регенерации ионитов?

Лабораторная работа № 7

Анализ сточных вод сахарного производства

Введение

В пищевой промышленности наибольшее количество воды потребляется сахарными заводами. Если для нужд свеклосахарного завода использовать только чистую воду из естественных водоемов, не возвращая части отработавшей воды в производство, то общий расход промышленной (свежей) воды составит 1200-1500% к массе свеклы. Сократить расход свежей воды до 150-250% к массе свеклы можно при условии использования на многих участках сахарного завода отработавшую воду по схеме оборотного водоснабжения. Артезианская вода расходуется только на промывание сахара-песка в центрифугах, для раскачки утфеля Ι кристаллизации и нужд заводской лаборатории.

Сточные (отработавшие) воды сахарных заводов разнообразны по своему физико-химическому составу, степени загрязнения и способу требуемой очистки. По степени загрязнения их классифицируют на три категории. Каждую категорию подразделяют на две подгруппы: А и Б, из которых вода подгруппы А по качеству лучше подгруппы Б.

Сточные воды сахарного производства содержат большое количество органических веществ, и их очистка в естественных условиях связана с определенными трудностями, требует значительных земляных площадей и может оказывать отрицательное влияние на окружающую среду. В последние годы разработан ряд способов биологической очистки и соответствующее оборудование для их реализации. Предлагаемые в настоящее время способы очистки в основном базируются на анаэробных и аэробных процессах разложения примесей сточных вод сахарных и крахмалопаточных заводов.

Современная технология очистки сточных вод заключается в последовательном отделении содержащихся в них примесей механическим, анаэробным и аэробным способами. При этом анаэробный способ является новым процессом в технологии очистки сточных вод. Анаэробный процесс очистки требует для его проведения выдерживания температур в интервале 36-38 0 С, что связано с дополнительным расходом тепла. Его отличие от широко распространенного аэробного способа состоит прежде всего в минимальном приросте биоосадка и превращении углеводсодержащих примесей в биогаз, основным компонентом которого является метан.

Аэробный процесс

С 6 Н 12 О 6 + О 2 ---- СО 2 + Н 2 О + Биоосадок + Тепло (6360 кДж).

Анаэробный процесс

С 6 Н 12 О 6 ---- СН 4 + СО 2 + Биоосадок + Тепло (0,38 кДж).

Анаэробные способы подразделяют на четыре основные группы по типу используемых в процессах очистки реакторов:

С рециркуляцией биоосадка (активного ила):

Со слоем анаэробного осадка и внутренним его осаждением;

С инертными наполнителями для биоосадка;

Специальные.

Сточные воды, подвергаемые анаэробной очистке, должны содержать как можно меньше механических примесей и веществ, ингибирующих метаногенный процесс. В них должна пройти гидролизно-кислотная фаза и кроме этого сточные воды должны иметь определенную величину рН и температуру в диапазоне 36-38 0 С.

Считается, что анаэробный способ очистки экономически выгоден для сточных вод с загрязнением более 1,2-2,0 г/дм 3 БПК 5 (биологическое потребление кислорода). Верхний предел загрязнения при этом не ограничен. Он может равняться и 100 г/дм 3 ХПК (химическое потребление кислорода).

К ним относят:

А) Избыточную свежую воду из напорного резервуара, от охлаждения утфеля в утфелемешалках, от насосов и других установок с температурой ниже 30°С. Для возврата в производство эти воды не требуют очистки;

Б) Барометрическую, аммиачную и другие с температурой выше 30°С. Для возврата этих вод требуется предварительное охлаждение и аэрация.

К сточным водам II категории относят транспортерно-моечную воду из гидравлических транспортеров и свекломоек. Для повторного использования этих вод в производстве требуется их предварительная механическая очистка путем отстаивания в специальных отстойниках.

К сточным водам III категории относят: жомопрессовую воду, ее отстой, лаверные воды, осадок транспортерно-моечной воды, жидкий фильтрационный осадок, хозяйственно-бытовые, фекальные и другие вредные воды. Для очистки вод III категории требуются биологические и комбинированные способы очистки в соответствующих отстойниках и на полях фильтрации.

На действующих сахарных заводах за основу принимают следующие основные показатели баланса воды (% к массе свеклы): забор свежей воды из водоема – 164; количество оборотных вод I категории – 898; II категории –862; сточных вод III категории – 170 или 110 при условии отстаивания суспензии транспортерно-моечного осадка в вертикальных отстойниках-сгустителях Ш1-ПОС-3 и возврате декантата в контур рециркуляции вод II категории.

Для вновь строящихся свеклосахарных заводов потребление свежей воды на производственные нужды не должно превышать 80% к массе свеклы, а количество сбрасываемых очищенных производственных сточных вод в природные водоемы – не более 75% к массе свеклы.

При анализе качества промышленных и сточных вод определяют их температуру, цвет, запах, прозрачность, характеристику осадка, содержание взвешенных веществ, сухой остаток, рН, общую щелочность (кислотность), окисляемость, биохимическое потребление кислорода (БПК), химическое потребление кислорода (ХПК), концентрацию аммиака, нитратов, хлоридов и другие показатели.

Цель работы - освоить методы контроля качества промышленной (свежей) и сточных вод.

Определение динамической обменной емкости

и полной динамической обменной емкости катионита

Способность ионитов к ионному обмену характеризуется обменной емкостью, т.е. количеством функциональных групп, принимающих участие в обмене, которое выражается в эквивалентных единицах и относится к единице количества ионитов. Обменная емкость может быть определена как в статических, так и в динамических условиях, поэтому существуют понятия статической обменной емкости и динамической обменной емкости.

Цель работы : определить обменную емкость катионита в динамических условиях (ДОЕ и ПДОЕ).

ДОЕ (динамическая обменная емкость) – обменная емкость ионита, определяемая по появлению данного иона в вытекающем из колонки раствора (по «проскоку») (мг-экв/дм 3).

ПДОЕ (полная динамическая обменная емкость) – определяется по полному прекращению извлечения данного иона из раствора, т.е. в момент выравнивания концентрации поглощаемого иона в растворе и фильтрате при пропускании раствора через колонку с ионитом (мг-экв/дм 3).

Сущность динамического метода определения обменной емкости заключается в том, что через уплотненный слой ионита, находящегося в колонке, непрерывно пропускают раствор насыщающего иона до установления сорбционного равновесия между исходным раствором и сорбентом. По мере пропускания раствора через колонку в ней образуется сорбционный слой, т.е. в верхней ее части наступает полное насыщение ионита, затем фронт сорбции передвигается вниз по колонке. Когда фронт достигает конца колонки, наступает «проскок» насыщающего иона в фильтрат.

С момента сформирования насыщенного слоя сорбция происходит при режиме параллельного переноса фронта сорбции. Дальнейшее пропускание исходного раствора приводит к тому, что по всей толщине сорбента достигается полной насыщение, т.е. наступает равновесие. С этого времени концентрация фильтрата становится равной концентрации исходного раствора.

В данной работе в качестве насыщающего иона применяют ион меди (сульфат меди). При этом в колонке реакция ионного обмена:

CuSO 4 + 2HR = CuR 2 + H 2 SO 4

«Проскок» иона меди в фильтрат определяют с помощью качественной реакции на Cu 2+ с раствором аммиака. При этом протекает реакция:

2CuSO 4 + 2NH 4 OH = ↓(CuOH) 2 SO 4 + (NH 4) 2 SO 4

(

комплекс ярко-синего цвета

CuOH) 2 SO 4 + (NH 4) 2 SO 4 + 6NH 4 OH = 2SO 4 + 8H 2 O

Реагенты и оборудование

    Сульфат меди, 0,05н раствор.

    Иодистый калий КJ, 20 % раствор.

    Тиосульфат натрия Na 2 S 2 О 3 ,

0,05н раствор.

    Крахмал, 1% раствор.

    Серная кислота, 2н раствор

    Катионообменная смола КУ-2.

    Стеклянная хроматографическая колонка с краном длиной 20 см, диаметром 1 - 1,5 см.

    Штатив химический с лапками.

    Мерный цилиндр на 25 мл – 10 шт.

    Колба коническая для титрования на 250 мл – 2 шт

    Бюретка для титрования на 25 мл.

    Пипетки на 2, 5 и 10 мл

Ход анализа

Колонку заполняют заранее подготовленным катионитом, строго соблюдая требования равномерной и плотной упаковки. Колонку закрепляют в штативе строго вертикально. Поворотом крана устанавливают требуемую скорость истечения (3...4 мл/мин). При проведении анализа необходимо следить, чтобы над слоем катионита всегда находился слой жидкости и чтобы в колонке не образовывались воздушные пузырьки, и катионит не всплывал.

1. Определение объема раствора, пропущенного через ионит до момента проскока

Через колонку непрерывно пропускают раствор сульфата меди, собирая вытекающий из колонки фильтрат в стакан. Периодически отбирают несколько капель фильтрата в капельную пластинку и проводят качественную реакцию на присутствие ионов меди. Появление ярко-синего окрашивания свидетельствует о «проскоке» ионов меди в фильтрат. С помощью мерного цилиндра измеряют объем фильтрата, собранного до «проскока» ионов меди и записывают его (V проскок).

2. Определение объема раствора, пропущенного через ионит

до момента выравнивания концентраций

После наступления «проскока» продолжают пропускать раствор сульфата меди, но вытекающий из колонки фильтрат при этом собирают в мерные цилиндры порциями по 25 мл. В каждой порции фильтрата определяют содержание ионов меди методом йодометрического титрования.

Для этого отбирают аликвоту фильтрата (10 мл), переносят в колбу для титрования, добавляют 4 мл 2н раствора серной кислоты и 10 мл 20 %-го раствора йодистого калия. Титруют 0,05 н раствором тиосульфата натрия до светло-желтого окрашивания раствора, затем добавляют 3-4 капли крахмала и продолжают титрование до обесцвечивания синего раствора. (Если раствор после добавления йодистого калия имеет светло-желтую окраску, то крахмал добавляют сразу).

Пропускание раствора сульфата меди через колонку прекращают после того, как содержание иона меди в фильтрате сравняется с его концентрацией в исходном растворе. Записывают объем раствора, пропущенного через колонку до момента выравнивания концентраций (V полный).

По окончании эксперимента проводят регенерацию катионита, пропуская через колонку 150 мл 5 %-ного раствора соляной кислоты. Полноту регенерации проверяют качественной реакцией на ионы меди (при отсутствии синего окрашивания пробы фильтрата при добавлении к ней аммиака регенерация считается законченной). После пропуска регенерационного раствора колонку промывают дистиллированной водой до нейтральной реакции фильтрата (проверяют добавлением метилоранжа или бромтимолового синего).

Вычисления

1. Расчет концентрации ионов меди в фильтрате проводят по формуле:

Мг-экв/дм 3

2. По результатам анализа строят выходную хроматограмму (график в координатах: С – f(V раствора)), откладывая по оси абсцисс объем фильтрата (в миллилитрах), а по оси ординат – концентрацию ионов меди в порциях фильтрата (в мг-экв/дм 3).

3. Рассчитывают ДОЕ и ПДОЕ по формулам:


,

где: С – концентрация ионов (катионов для катионита, анионов для анионита) в пропускаемом растворе, мг-экв/дм 3 ;V проскок – количество воды, пропущенной через фильтр до проскока поглощаемого иона, дм 3 ;V полный – количество воды, пропущенной через фильтр до момента выравнивания концентраций, дм 3 ;V ионита – объём ионита, дм 3 .

Объем ионита рассчитывают по формуле:

,

где: r – радиус колонки, дм; h – высота слоя ионита, дм.

Вопросы для защиты:

    Что лежит в основе ионного обмена? Что такое иониты?

    Какие иониты называются макропористыми, гелевыми, изопористыми?

    Какие обменные группы содержат в своей структуре катиониты и аниониты?

    Что такое ионообменные смолы ядерного класса?

    Дайте характеристику показателям качества ионитов (гранулометрический состав, механическая прочность, химическая стойкость, осмотическая стабильность, термическая стойкость, набухаемость).

    Почему высоких температурах ухудшаются ионообменные свойства ионитов? С образованием каких веществ происходит разрушение катионита КУ-2-8 и анионита АВ-17-8 при высоких температурах?

    Сорбционная способность ионитов характеризуется коэффициентом распределения К. Что это такое?

    Что такое ПОЕ ионитов?

    Дайте определение ДОЕ. В каких единицах выражается ДОЕ? Как рассчитывается ДОЕ ионита?

    Дайте определение ПДОЕ. В каких единицах выражается ПДОЕ? Как рассчитывается ПДОЕ ионита?

    Какой обменной емкости принимается равной рабочая обменная емкость и почему?

    Какие факторы влияют на обменную емкость ионита?

    Чем производится регенерация катионитов и анионитов?

    Почему над слоем ионита в колонке всегда должен находиться слой жидкости?

    Приведите расчет для приготовления 0,05 н раствора сульфата меди.

    Напишите реакцию, протекающую в колонке между катионитом и пропускаемым через него раствором.

    Когда наступает «проскок» ионов в фильтрат? Как проверяется «проскок» ионов меди в фильтрат? Напишите реакцию.

    До какого момента пропускают раствор сульфата меди через колонку после наступления «проскока»? Чем этот момент характеризуется?

    Каким методом определяют содержание меди в фильтрате? Напишите уравнения протекающих реакций, используя метод ионно-электронного баланса. Назовите титрант, индикатор. Какую роль выполняет 2 н серная кислота? По какому принципу действует индикатор? Почему крахмал добавляют в конце титрования?

    Чем регенерируют катионит после проведения эксперимента? Приведите расчет для приготовления регенерационного раствора.

Заранее благодарю за ответ.

С100Е - сильнокислотная катионообменная смола гелевого типа, обладающая высокой обменной емкостью, химической и физической стабильностью и превосходными рабочими характеристиками. С100Е эффективно задерживает взвешенные частицы, а также, в кислотной (Н+) форме, удаляет ионы железа и марганца.

Высокая обменная емкость позволяет получать воду с общей жесткостью порядка 0,05 мг-экв/л, а превосходная кинетика ионного обмена - добиться высоких скоростей потока. При использовании С100Е проскок ионов, обусловливающих жесткость воды в нормальных рабочих условиях, как правило, не превышает 1% от общей жесткости исходной воды. При этом обменная емкость смолы практически не изменяется при условии, что доля одновалентных ионов не превышает 25%.

С100Е не растворим в растворах кислот и щелочей и во всех обычных органических растворителях. Присутствие в воде остаточных окислителей (например, свободного хлора или ионов гипохлорита) может привести к уменьшению механической прочности частиц катионообменной смолы. С100Е термически стабильна до температуры 150оС, однако при высоких температурах обменная емкость катионообменной смолы в кислотной (Н+) форме снижается.

Технические характеристики

Физические свойства


прозрачные сферические частицы желтоватого цвета

Форма поставки

Насыпная масса, г/см3

Удельный вес, г/см3

Коэффициент однородности

Размер гранул, мм (mesh)

Обменная емкость, г-экв/л

Набухаемость Na + → H + , макс, %

Набухаемость Сa 2+ → Na + , макс, %

Условия применения


6 - 10 (Na-форма)

Максимальная рабочая температура, оС

Высота слоя, см (дюймы)

Рабочая скорость потока, объем смолы/час

Расширение слоя в режиме обратной промывки, %

Концентрация раствора NaCl, %

Расход соли на регенерацию, гр. NaCl /л смолы

КРАТКАЯ ХАРАКТЕРИСТИКА
свободное пространство над загрузкой - 50%
размер зерен 0.6мм до 90%
Насыпной вес 820гр/л
Содержание воды (влажность) 42-48%
Общая емкость до 2 гр экв/л
рабочая температура от 4 – 120 0 С
рН воды 0 - 14
переход ионов Na на Н - 8%
высота слоя от 0.8 - 2м
скорость при сервисе от 5 - 40м/час
удельная скорость сервиса 20ОЗ/час
скорость обратной промывки при 20 С от 10 - 12м/час
объем воды для обратной промывки при новой загрузке 20ОЗ
объем воды для обратной промывки 4ОЗ
объем воды для медленной промывки соли 4ОЗ
расход соли при регенерации на 1л загрузки - 150гр
остаточная жесткость - 0.5мг экв/л
удельное потеря давления в кПа м 2 высоту загрузки - 1
потеря давления в 11мбар при 4 о С на 1м высоты загрузки
скорость при регенерации - 5м/час
скорость при промывке соли водой - 5м/час

УСЛОВИЯ ПРИМЕНЕНИЯ
отсутствие в воде окисленного железа (Fe 3+)
отсутствие в воде растворенного кислорода
отсутствие органических веществ в воде
отсутствие в воде любых окислителей
после натрий - умягчения повысится общая щелочность и сухой остаток.
сильные окислители такие как азотная кислота может вызвать сильную реакцию
взвешенные вещества в исходной воде до 8 мг/л
цветность исходной воды до 30 0 С
мутность исходной воды до 6 мг/л
общая жесткость исходной воды до 15 мг экв/л

Ниже приводятся методики расчета обменной емкости и других параметров катионита.

Рабочую обменную емкость катионита Е ф г÷экв/ м3, можно выразить следующей формулой:

Е ф = Q x Ж; Ер = ер x Vк.

Объем загруженного в фильтр катионита в набухшем состоянии выражается формулой:

Формула для определения рабочей обменной емкости катионита ep, г÷экв/ м 3:

ер = Q x Ж/S x h;

где Ж - жесткость исходной воды, г÷экв/ м3; Q - количество умягченной воды, м 2 ; S - площадь катионитового фильтра, м 2 ; h - высота слоя катионита, м.

Обозначив скорость движения воды в катионите как v k , количество умягченной воды Q можно найти по следующей формуле:

Q = v k x S x Tk = ер x S x h /Ж;

откуда можно вычислить и длительность работы катионитового фильтра Тк:

Tk = ер x h/v k x Ж.

Расчет обменной емкости катионита возможно также произвести и по коррелирующим графикам.

Исходя из приближенных практических данных, Ваш фильтр сможет очистить не более 1500 л. воды. Для более точных расчетов необходимо знать количество (объем) смолы в вашем фильтре и рабочую обменную емкость вашей смолы (для катионнообменных смол рабочая емкость варьирует от 600 до 1500 мг.-экв/л). Зная эти данные, Вы легко вычислите точное количество умягченной воды по приведенным ваше формулам.

Значительное количество протекающих в природе и осуществляемых на практике процессов являются ионообменными. Ионный обмен лежит в основе миграции элементов в почвах и организме животных и растений. В промышленности его применяют для разделения и получения веществ, обессоливания воды, очистки сточных вод, концентрирования растворов и др. Обмен ионами может происходить как в гомогенном растворе, так и в гетерогенной системе. В данном случае под ионным обменом понимают гетерогенный процесс, посредством которого осуществляется обмен между ионами, находящимися в растворе и в твердой фазе, называемойионитом или ионообменником . Ионит сорбирует ионы из раствора и взамен отдает в раствор ионы, входящие в его структуру.

3.5.1. Классификация и физико-химические свойства ионитов

Ионообменные сорбенты, иониты это полиэлектролиты, которые состоят изматрицы – неподвижных групп атомов или молекул (высокомолекулярных цепей) с закрепленными на них активнымиионогеными группами атомов, которые обеспечивают его ионообменную способность. Ионогенные группы, в свою очередь, состоят из неподвижных ионов, связанных с матрицей силами химического взаимодействия, и эквивалентного им количества подвижных ионов с противоположным зарядом –противоионов . Противоионы способны перемещаться под действием градиента концентраций и могут обмениваться на ионы из раствора с тем же зарядом. В системе ионит - раствор электролита, наряду с распределением обменивающихся ионов, происходит также перераспределение между этими фазами молекул растворителя. Вместе с растворителем в ионит проникает некоторое количествокоионов (ионов, одноименных по знаку заряда с фиксированными). Поскольку электронейтральность системы сохраняется, вместе с коионами в ионит дополнительно переходит эквивалентное им количество противоионов.

В зависимости от того, какие ионы подвижны, иониты делят на катиониты и аниониты.

Катиониты содержат неподвижные анионы и обмениваются катионами, для них характерны кислотные свойства – подвижный ион водорода или металла. Например, катионитR / SO 3 - H + (здесьR– структурная основа с неподвижной функциональной группойSO 3 - и противоионом Н +). По виду содержащихся в катионите катионов его называют Н-катионитом, если все его подвижные катионы представлены только водородом, илиNa-катионитом, Са-катионитом и т.п. Их обозначаютRH, RNa, R 2 Ca, гдеR – каркас с неподвижной частью активной группы катионита. Широко используются катиониты с неподвижными функциональными группами –SO 3 - , -РО 3 2- , -СОО - , -AsO 3 2- и др.

Аниониты содержат неподвижные катионы и обмениваются анионами, для них характерны основные свойства – подвижный гидроксид-ион или ион кислотного остатка. Например, анионитR / N(CH 3) 3 + OH - , с функциональной группой -N(CH 3) 3 + и противоионом ОН - . Анионит может быть в разных формах, как и катионит: ОН-анионит илиROH,SO 4 -анионит илиRSO 4 , гдеR- каркас с неподвижной частью активной группы анионита. Наиболее часто применяют аниониты с неподвижными группами – + , - + , NH 3 + ,NH + и др.

В зависимости от степени диссоциации активной группы катионита, и соответственно от способности к ионному обмену, катиониты делят на сильнокислотные и слабокислотные . Так, активная группа –SO 3 Н полностью диссоциирована, поэтому ионный обмен возможен в широком интервале рН, катиониты, содержащие сульфогруппы относят к сильнокислотным. К катионитам средней силы относятся смолы с группами фосфорной кислоты. Причем, для двухосновных групп, способных к ступенчатой диссоциации, свойствами кислоты средней силы обладает только одна из группировок, вторая ведет себя уже как слабая кислота. Поскольку эта группа в сильнокислой среде практически не диссоцииирует, поэтому данные иониты целесообразно применять в слабокислой или щелочной средах, при рН4. Слабокислотные катиониты содержат карбоксильные группы, которые даже в слабокислых растворах мало диссоциированы, их рабочий диапазон при рН5. Существуют также бифункциональные катиониты, содержащие как сульфогруппы, так и карбоксильные группы или сульфо- и фенольные группы. Эти смолы работают в сильнокислотных растворах, а при высокой щелочности резко увеличивают свою емкость.

Аналогично катионитам аниониты делят на высокоосновные и низкоосновные . Высокоосновные аниониты содержат в качестве активных групп хорошо диссоциированные четвертичные аммониевые или пиридиновые основания. Подобные аниониты способны к обмену анионами не только в кислых, но и щелочных растворах. Средне- и низкоосновные аниониты содержат первичные, вторичные и третичные аминогруппы, которые являются слабыми основаниями, их рабочий диапазон при рН89.

Используют также амфотерные иониты - амфолиты , в состав которых входят функциональные группы со свойствами, как кислот, так и оснований, например, группировки органических кислот в сочетании с аминогруппами. Некоторые иониты, помимо ионообменных свойств обладают комплексообразующими или окислительно-восстановительными свойствами. Например, иониты, содержащие ионогенные аминогруппы, дают комплексы с тяжелыми металлами, образование которых идет одновременно с ионным обменом. Ионный обмен можно сопровождать комплексообразованиемвжидкой фазе, регулируя его значением рН, что позволяет производить разделение ионов. Электроноионообменники используются в гидрометаллургии для окисления или восстановления ионов в растворах с одновременной их сорбцией из разбавленных растворов.

Процесс десорбции поглощенного на ионите иона называют элюированием , при этом происходит регенерация ионита и перевод его в начальную форму. В результате элюирования поглощенных ионов, при условии, что ионит достаточно «нагружен», получают элюаты с концентрацией ионов в 100 раз больше, чем в исходных растворах.

Ионообменными свойствами обладают некоторые природные материалы: цеолиты, древесина, целлюлоза, сульфированный уголь, торф и др., однако для практических целей их почти не применяют, поскольку они не имеют достаточно высокой обменной емкости, стойкости в обрабатываемых средах. Наибольшее распространение получили органические иониты – синтетические ионообменные смолы, представляющие собой твердые высокомолекулярные полимерные соединения, в состав которых введены функциональные группы, способные к электролитической диссоциации, поэтому их называют полиэлектролитами. Их синтезируют поликонденсацией и полимеризацией мономеров, содержащих необходимые ионогенные группы, или присоединением ионогенных групп к отдельным звеньям ранее синтезированного полимера. Полимерные группы химически связываются между собой, сшиваются в каркас, то есть в пространственную трехмерную сетку, называемую матрицей, с помощью взаимодействующего с ними вещества - кресс-агента. В качестве сшивки часто используют дивинилбензол. Регулируя количество дивинилбензола, можно изменять размеры ячеек смолы, что позволяет получить иониты, избирательно сорбирующие какой-либо катион или анион за счет "ситового эффекта", ионы, имеющие размер, больший, чем размер ячейки, не поглощаются смолой. Для увеличения размера ячеек используют реагенты с более крупными, чем у винилбензола молекулами, например, диметакрилаты этиленгликолей и бифенолов. За счет применения телогенов, веществ препятствующих образованию длинных линейных цепей, достигается повышенная проницаемость ионитов. В местах обрыва цепей возникают поры, за счет этого иониты приобретают более подвижный каркас и сильнее набухают при контакте с водным раствором. В качестве телогенов используют четыреххлористый углерод, алкилбензолы, спирты и др. Полученные таким способом смолы имеют гелевую структуру или микропористую. Для получениямакропористых ионитов в реакционную смесь добавляют органические растворители, каковыми служат высшие углеводороды, например изооктан, спирты. Растворитель захватывается полимеризующейся массой, а после завершения образования каркаса отгоняется, оставляя в полимере поры большого размера. Таким образом, по структуре иониты делятся на макропористые и гелевые.

Макропористые иониты имеют лучшие кинетические характеристики обмена по сравнению с гелевыми, так как обладают развитой удельной поверхностью 20-130 м 2 /г (в отличии от гелевых, имеющих поверхность5 м 2 /г)и порами большого размера - 20-100 нм, что облегчает гетерогенный обмен ионами, который осуществляется на поверхности пор. Скорость обмена существенно зависит от пористости зерен, хотя она обычно не влияет на их обменную емкость. Чем больше объем и размер зерен, тем быстрее внутренняя диффузия.

Гелевые ионообменные смолы состоят из гомогенных зерен, в сухом виде не имеющих пор и непроницаемых для ионов и молекул. Они становятся проницаемыми после набухания в воде или водных растворах.

Набухание ионитов

Набуханием называется процесс постепенного увеличения объема ионита, помещенного в жидкий растворитель, за счет проникновения молекул растворителя вглубь углеводородного каркаса. Чем сильнее набухает ионит, тем быстрее идет обмен ионами.Набухание характеризуетсявесовым набуханием - количеством поглощенной воды на 1 г сухого ионита иликоэффициентом набухания - отношением удельных объемов набухшего ионита и сухого. Нередко, объем смолы в процессе набухания может увеличиться в 10-15 раз. Набухание высокомолекулярной смолы тем больше, чем меньше степень сшивки образующих ее звеньев, то есть чем менее жесткая у нее макромолекулярная сетка. Большинство стандартных ионитов содержит в сополимерах 6-10% дивинилбензола (иногда 20%). При использовании для сшивки вместо дивинилбензола длинноцепочечных агентов получают хорошо проницаемые макросетчатые иониты, на которых ионный обмен идет с большой скоростью. Помимо структуры матрицы на набухание ионита влияет наличие в нем гидрофильных функциональных групп: ионит набухает тем сильнее, чем больше гидрофильных групп. Кроме того, сильнее набухают иониты, содержащие однозарядные противоионы, в отличие от двух- и трехзарядных В концентрированных растворах набухание происходит в меньшей степени, чем в разбавленных. Большинство неорганических ионитов совсем или почти не набухают, хотя и поглощают воду.

Емкость ионитов

Ионообменная способность сорбентов характеризуется их обменной емкостью , зависящей от числа функциональных ионогенных групп в единице массы или объема ионита. Она выражается в миллиэквивалентах на 1 г сухого ионита или в эквивалентах на 1м 3 ионита и для большинства промышленных ионитов находится в пределах 2-10 мэкв/г.Полная обменная емкость (ПОЕ) – максимальное количество ионов, которое может быть поглощено ионитом при его насыщении. Это постоянная величина для данного ионита, которую можно определить как в статических, так и в динамических условиях.

В статических условиях, при контакте с определенным объемом раствора электролита, определяют полную статическую обменную емкость (ПСОЕ), иравновесную статическую обменную емкость (РСОЕ), которая изменяется в зависимости от факторов, влияющих на равновесие (объем раствора, его состав, концентрация и др.). Равновесие ионит – раствор соответствует равенству их химических потенциалов.

В динамических условиях, при непрерывной фильтрации раствора через определенное количество ионита определяют динамическую обменную емкость – количество ионов, поглощенных ионитом до проскока сорбируемых ионов (ДОЕ),полную динамическую обменную емкость до полной отработки ионита (ПДОЕ). Емкость до проскока (рабочая емкость), определяется не только свойствами ионита, а также зависит от состава исходного раствора, скорости его пропускания через слой ионита, от высоты (длины) слоя ионита, степени его регенерации и величины зерен.

Рабочая емкость определяется по выходной кривой рис. 3.5.1

S 1 – рабочая обменная емкость, S 1 +S 2 – полная динамическая обменная емкость.

При осуществлении элюирования в динамических условиях кривая элюирования имеет вид кривой представленной на рис. 3.5.2

Обычно ДОЕ превышает 50% от ПДОЕ для сильнокислых и сильноосновных ионитов и 80% для слабокислых и слабоосновных ионитов. Емкость сильнокислых и сильноосновных ионитов остается практически неизменной в широком диапазоне рН растворов. Емкость же слабокислых и слабоосновных ионитов в значительной степени зависит от рН.

Степень использования обменной емкости ионита зависит от размеров и формы зерен. Обычно размеры зерен находятся в пределах 0,5-1 мм. Форма зерен зависит от способа приготовления ионита. Они могут быть сферическими или иметь неправильную форму. Сферические зерна предпочтительнее – они обеспечивают лучшую гидродинамическую обстановку и большую скорость процесса. Применяют также иониты с цилиндрическими зернами, волокнистые и другие. Чем мельче зерна, тем лучше используется обменная емкость ионита, но при этом в зависимости от применяемой аппаратуры, возрастает или гидравлическое сопротивление слоя сорбента, или унос малых зерен ионита раствором. Уноса можно избежать применяя иониты, содержащие ферромагнитную добавку. Это позволяет удерживать мелкозернистый материал во взвешенном состоянии в зоне – магнитного поля, через которую движется раствор.

Иониты должны обладать механической прочностью и химической устойчивостью, то есть не разрушаться в результате набухания и работы в водных растворах. Кроме того, они должны легко регенерироваться, тем самым сохранять свои активные свойства в течение длительного времени и работать без смены несколько лет.

Умягчение воды — процесс, направленный на удаление из нее катионов кальция и магния, т.е. снижение ее жесткости .

По требованию САНПиН жесткость питьевой воды не должна превышать 7 мг-экв/л, а к воде, участвующей в процессах теплообмена выставляют требования глубокого ее умягчения, т.е. до 0,05…0,01 мг-экв/л. Жесткость воды, используемой для подпитки барабанных котлов ТЭЦ, не должна превышать 0,005 мг-экв/л, или 5 мкг-экв/л.

Снижение совокупной концентрации катионов Mg(II), Ca(II) и анионов, с которыми они при определенных условиях могут образовывать не стенках труб и аппаратов плотные нерастворимые отложения, проходит на системах водоочистки и водоподготовки различными методами, чей выбор определяется качеством исходной воды, требованию к ее очистке и технико-экономическими соображениями.

Метод ионного обмена.

В основе данного метода лежит способность некоторых материалов (катионитов и анионитов) поглощать из воды ионы (катионы и анионы) в обмен на эквивалентное количество ионов (катионов и анионов).

Процесс катионирования — тот процесс, при котором происходит обмен катионами. В водоподготовке при умягчении — катионами катионита на ионы Ca 2+ и Mg 2+ из воды.

Процесс анионирования — соответственно анионами, в основном при обессоливании и глубоком обессоливании.

Магнитная обработка воды.

Использование магнитной обработки воды целесообразно в случае высокой кальциево-карбонатной жесткости.

В процессе прохождения воды сквозь магнитное поле в ней образуются центры кристаллизации, которые укрупняются и выпадают в неприкипающий шлам, удаляемый при продувке. Т.е. выделение осадка идет не на стенках поверхности нагрева, а в объеме воды.

Влияние на противонакипный эффект оказывают такие факторы, как качественный и количественный состав воды, скорость движения жидкости сквозь магнитные силовые линии, напряженность магнитного поля и время пребывания в нем воды.

Условиями для осуществления успешной магнитной обработки воды должно являться высокое содержание карбоната и сульфата кальция, а концентрация свободного оксида углерода IV должна быть меньше равновесной. Так же увеличивают противонакипный эффект содержащиеся в воде примеси оксидов железа и прочих.

Аппараты магнитной обработки воды работают как на основе постоянных магнитов, так и на основе электромагнитов. Недостатком аппаратов с постоянными магнитами является то, что время от времени их приходится чистить от ферромагнитных примесей. Электромагниты чистят от оксидов железа, отключив их от сети.

Скорость воды в магнитном поле при ее обработке не должна превышать 1м/с. Для увеличения объема обрабатываемой воды на единицу времени применяют аппараты с послойной магнитной обработкой.

Метод магнитной обработки нашел применение на тепловых сетях горячего водоснабжения, на ТЭЦ, в теплообменных аппаратах.

Выбор данного метода при решении задачи умягчения воды должен главным образом основываться на его эффективности при очистке воды данного качества – использоваться как основной, последующей ступени или в качестве дополнительного.

Обратный осмос.

В данное время наиболее широкое распространение в водоподготовке получил метод обратного осмоса.

Суть метода состоит в том, что под высоким давлением, — от 10 до 25 атмосфер, — вода подается на мембраны. Мембраны, являясь селективным материалом по отношению к проходящим сквозь нее примесям, пропускают молекулы воды и не пропускают растворенные в воде ионы.

Таким образом, на выходе после установки обратного осмоса мы получаем два потока — первый поток чистой воды, прошедшей сквозь мембрану, так называемый пермеат, и второй поток — воды с примесями, не прошедшей сквозь мембрану, называемый концентратом.

Пермеат направляется потребителю и составляет от 50 до 80 % от объема подаваемой воды. Его количество зависит от свойств мембраны и ее состояния, качества исходной воды и желаемого результата очистки. Чаще всего это около 70%.

Концентрат, соответственно, от 50 до 20%.

При увеличении нагрузки на мембрану, т.е. увеличения процентного соотношения между пропускаемой водой и водой с примесями, селективность мембраны снижается и достигает минимума при отсутствии концентрата, т.е. тогда, когда вся вода, подающаяся на установку обратного осмоса, проходит сквозь мембрану.

Мембраны обратного осмоса изготовляются из композитного полимерного материала особой структуры, позволяющего при высоких давлениях пропускать воду и не пропускать растворенные в ней ионы и прочие примеси. При увеличении нагрузки на мембрану срок ее службы сокращается, а при достижении критических параметров, при которых попускаемая жидкость с примесями проходит сквозь мембрану полностью, она разрушается. Средний срок службы мембраны — 5 лет.

Поверхность мембран со временем может обрастать микроорганизмами, покрываться слоем труднорастворимых соединений. Для чистки обратноосмотических мембран применяют растворы кислот и щелочей с добавлением биоцидов.

При промывки обратного осмоса нельзя забывать, что полупроницаемая мембрана — это не фильтр. Промывка должна проводиться исключительно по ходу движения жидкости. Обратный ток раствора воды приведет к выходу мембраны из строя.

Реагентные методы обработки воды.

Реагентные методы обработки воды служат в основном для неглубокого умягчения воды путем добавления реагентов и перевода солей жесткости в малорастворимые соединения с последующим их осаждением.

В качестве реагентов используется известь, сода, едкий натр и пр. В настоящий момент мало где применяются, но для общего понимания процессов перевода в малорастворимые соединения кальция и магния и дальнейшее их осаждение, рассмотрим их.

Снижение накипи известкованием.

Метод применим к воде с высокой карбонатной и малой некарбонатной жесткостью.

При добавлении известкового молока pH воды повышается, что приводит к переходу растворенного диоксида углерода и гидрокарбонатного иона в карбонатный ион:
СО 2 + ОН - = СО 3 2- + Н 2 О,
НСО 3- + ОН - = СО 3 2- + Н 2 О.

При насыщении воды карбонатными ионами кальций выпадает в осадок:
Са 2+ + СО 3 2- = СаСО 3 ↓.

Также с увеличением рН в осадок выпадает и магний:
Мg 2+ + OH - = Mg(OH) 2 ↓.

В случае, если превышение карбонатной жесткости незначительно, то вместе с известью дозируют соду, чье присутствие снижает некарбонатную жесткость:

CaSO 4 + Na 2 CO 3 = CaCO 3 ↓ + Na 2 SO 4 .

Для более полного осаждения катионов магния и кальция рекомендуется подогревать воду до температуры 30 - 40 градусов. С ее повышением растворимость CaCO 3 и Mg(OH) 2 падает. Это дает возможность снижать жесткость воды 1 мг-экв/л и менее.

Содово-натриевый метод умягчения воды.

Добавление соды необходимо в том случае, если некарбонатная жесткость больше чем карбонатная. При равенстве этих параметров добавление соды может и не понадобиться совсем.

Гидрокарбонаты кальция и магния в реакции со щелочью образуют малорастворимые соединения кальция и магния, соду, воду и углекислый газ:
Ca(HCO 3) 2 + 2NaOH = CaCO 3 ↓ + Na 2 CO 3 + 2H 2 O,
Mg(HCO 3) 2 + 2NaOH = Mg(OH) 2 ↓ + Na 2 CO 3 + H 2 O + CO 2 .

Образовавшийся в результате реакции гидрокарбоната магния с щелочью углекислый газ снова реагирует с щелочью с образованием соды и воды:
CO 2 + NaOH = Na 2 CO 3 + H 2 O.

Некарбонатная жесткость.
Сульфат и хлорид кальция реагирует с образовавшейся в реакциях карбонатной жесткости и щелочи содой и добавленной содой с образованием неприкипающего в щелочных условиях карбоната кальция:
CaCl 2 + Na 2 CO 3 = CaCO 3 ↓ + 2NaCl,
CaSO 4 + Na 2 CO 3 = CaCO 3 ↓ + Na 2 SO 4

Сульфат и хлорид магния реагируют со щелочью, образуя выпадающий в осадок гидроксид магния:
MgSO 4 + 2NaOH = Mg(OH) 2 ↓ + Na 2 SO 4 ,
MgCl 2 + 2NaOH = Mg(OH) 2 ↓ + 2NaCl .

Ввиду того, что в реакциях гидрокарбоната с щелочью образуется сода, которая в дальнейшем реагирует с некарбонатной жесткостью, ее количество необходимо коррелировать в соотношении карбонатной и некарбонатной жесткости: при их равенстве соду можно не добавлять, при условии Ж к > Ж нк образуется избыток соды, при обратном соотношении Ж к

Комбинированные методы.

Сочетание различных методов обработки воды с целью снижения ее жесткости дает в иной раз довольно высокую результативность. Обусловлено это, как правило, высокими требованиями к качеству воды и пара.

Примером может быть сочетание обратного осмоса с натрий-катионированием . Основная жесткость воды снижается на фильтрах-катионитах, на обратном осмосе идет ее обессоливание.

В другом случаем в качестве дополнительной ступени очистки может служить магнитная обработка воды – установку располагают после системы умягчения на трубопроводе циркуляции горячего водоснабжения.