До вчерашнего дня в моем представлении все угольные электростанции были примерно одинаковыми и представляли из себя идеальные съемочные площадки фильмов ужасов. С почерневшими от времени конструкциями, котлоагрегатами, турбинами, миллионами различных труб и их хитрых сплетений с щедрым слоем черной угольной пыли. Редкие рабочие, больше похожие на шахтеров, в скудном освещении зеленых газовых ламп ремонтируют какие-то сложные агрегаты, тут и там, шипя, вырываются клубы пара и дыма, на полу разлились густые лужи из жиж темного цвета, повсюду что-то капает. Вот примерно такими я видел угольные станции и считал, что век их уже уходит. Будущее за газом - думал я.

Оказывается, вовсе нет.

Вчера я посетил новейший угольный энергоблок Черепетской ГРЭС в Тульской области. Оказывается, что современные угольные станции вовсе не чумазые, и дым из их труб идет не густой и не черный.

1. Несколько слов о принципе работы ГРЭС . В котел с помощью насосов подается под большим давлением вода, топливо и атмосферный воздух. В топке котла происходит процесс горения - химическая энергия топлива превращается в тепловую. Вода протекает по трубной системе, расположенной внутри котла.

2. Сгорающее топливо является мощным источником теплоты, передающейся воде, которая нагревается до температуры кипения и испаряется. Получаемый пар в этом же котле перегревается сверх температуры кипения, примерно до 540 °C и под высоким давлением 13–24 МПа по одному или нескольким трубопроводам подается в паровую турбину.

3. Паровая турбина, электрогенератор и возбудитель составляют в целом турбоагрегат. В паровой турбине пар расширяется до очень низкого давления (примерно в 20 раз меньше атмосферного), и потенциальная энергия сжатого и нагретого до высокой температуры пара превращается в кинетическую энергию вращения ротора турбины. Турбина приводит в движение электрогенератор, преобразующий кинетическую энергию вращения ротора генератора в электрический ток.

4. Забор воды осуществляется непосредственно из Черепетского водохранилища.

5. Вода проходит химическую очистку и глубокое обессоливание, чтобы в паровых котлах и турбинах не появлялись отложения на внутренних поверхностях оборудования.

6. Железнодорожным транспортом на станцию доставляются уголь и мазут.

7. На открытом складе угля краны-перегружатели разгружают вагоны. Дальше в дело вступает большой , который подает на конвейер.

8. Так уголь попадает на участки дробильной установки для предварительного измельчения угля и последующего пылеприготовления. В сам котел уголь подается в виде смеси угольной пыли и воздуха.

10. Котельная установка располагается в котельном отделении главного корпуса. Сам котел - это что-то гениальное. Огромный сложный механизм высотой с 10-этажный дом.

14. Гулять по лабиринтам котельной установки можно вечно. Время, отведенное на съемку дважды успело закончиться, но оторваться от этой промышленной красоты было невозможно!

16. Галереи, лифтовые шахты, переходы, лестницы и мосты. Одним словом - космос)

17. Лучи солнца осветили крошечного на фоне всего происходящего человека, и я невольно задумался, что все эти сложные гигантские конструкции придумал и построил человек. Вот такой маленький человек придумал десятиэтажные печи, чтобы в промышленных масштабах вырабатывать электроэнергию из полезного ископаемого.

18. Красота!


19. За стеной от котельной установки располагается машинный зал с турбогенераторами. Еще одно гигантское помещение, более просторное.

20. Вчера был торжественно введен в эксплуатацию энергоблок №9, что явилось завершающим этапом проекта расширения Черепетской ГРЭС. Проект включал строительство двух современных пылеугольных энергоблоков мощностью по 225 МВт каждый.

21. Гарантированная электрическая мощность нового энергоблока - 225 МВт;
Электрический КПД - 37.2 %;
Удельный расход условного топлива на выработку электроэнергии - 330 гут/кВт*ч.

23. В состав основного оборудования входят две паровые конденсационные турбины производства ОАО «Силовые машины» и два котлоагрегата, производителя ОАО «ЭМАльянс». Основное топливо нового энергоблока - Кузнецкий каменный уголь марки ДГ.

24. Пультовая.

25. Энергоблоки оснащены первой на российском рынке интегрированной системой сухой пыле-сероочистки дымовых газов с электростатическими фильтрами.

26. Трансформаторы ОРУ.

28. Ввод нового энергоблока позволит вывести из эксплуатации устаревшее угольное оборудование первой очереди без снижения объема выработки электроэнергии и суммарной установленной мощности станции.

29. Вместе с новым энергоблоком были построены две 87-метровые градирни - часть системы технического водоснабжения, которая обеспечивает подачу большого количества холодной воды для охлаждения конденсаторов турбин.

30. Семь пролетов по 12 метров. Снизу такая высота кажется не такой серьезной.

31. На верхней площадке трубы было одновременно и жарко и прохладно. Фотоаппарат постоянно запотевал.

32. Вид на энергоблок с градирни. Новые энергомощности станции спроектированы таким образом, чтобы значительно снизить выбросы загрязняющих веществ, сократить пылевыделение при работе на складе угля, уменьшить количество потребляемой воды, а также исключить возможность загрязнения окружающей среды сточными водами.

34. Внутри градирни все оказалось довольно просто и скучно)

36. На фотографии хорошо виден новый энергоблок и два старых. Как коптит труба старого энергоблока и нового. Постепенно старые энергоблоки выведут из эксплуатации и разберут. Такие дела.

Топливо, холодная вода и воздух - вот что потребляет тепловая электростанция. Зола, горячая вода, дым и электроэнергия - то, что она производит.

Тепловые электростанции работают на различных видах топлива.

В средней полосе Советского Союза многие электростанции работают на местном топливе - торфе. Его сжигают в топках паровых котлов в кусковом виде на движущихся решетках или в виде торфяной крошки - фрезерного торфа - в шахтно-мельничных топках или топках системы инж. Шершнева.

Фрезерный торф получается путем снятия мелкой стружки, крошки с торфяного массива зубчатыми барабанами - фрезами. Затем эту крошку сушат.

Сжигание фрезерного торфа в чистом виде долгое время оставалось неразрешенной проблемой, пока у нас в СССР инженер Шершнев не сконструировал топку, в которой фрезерный торф сжигается во взвешенном состоянии. Фрезерный торф вдувается воздухом в топку. Несгоревшие крупные частицы падают, но опять подхватываются сильной струей воздуха и, таким образом, остаются в топочном пространстве во взвешенном состоянии до полного сгорания.

В 1931 г. в СССР пущена первая в мире электростанция, сжигающая фрезерный торф в подобных топках. Это Брянская районная электростанция.

Позднее для сжигания фрезерного торфа были сконструированы шахтно-мельничные топки. В шахтных мельницах фрезерный торф подсушивается, дробится, перемешивается с воздухом и уже в виде очень мелких подсушенных частиц попадает в топку, где сгорает.

В нефтяных районах СССР есть еще электростанции, работающие па жидком топливе - мазуте (отходы перегонки нефти). Электростанции, находящиеся вблизи металлургических заводов, потребляют в качестве топлива доменный газ и газ коксовых печей. С открытием месторождений природного· газа часть электростанций стала применять и этот газ в топках своих котлов.

Но ни один из этих видов топлива не является таким распространенным, как уголь. Большинство тепловых электростанций СССР потребляет в качестве топлива различные со-рта углей.

Современные электростанции очень неприхотливы к качеству угля. Они могут использовать многозольные и Блажные угли, которые непригодны к сжиганию в топках пароходов и паровозов, в доменных и мартеновских печах.

Раньше на электростанциях уголь сжигался в топках паровых котлов на решетках - таких же, как в печах для кускового торфа и для дров. Практика показала, что значительно выгоднее сжигать уголь в виде мелкого порошка - угольной пыли. Для ее получения уголь размалывается в мельницах. В этих же мельницах он и подсушивается. Большинство современных тепло-вых электростанций работает на угольной пыли.

Для тепловой электростанции требуется очень большое количество воды. Надо питать паровые котлы. Но больше всего воды идет для охлаждения отработанного пара, для конденсирования его.

Современные крупные тепловые электростанции строятся большей частью на берегу реки, озера или специально созданного пруда. Но не всегда в том месте, где строится электростанция, есть достаточное количество воды. В этом случае довольствуются маленьким водохранилищем, где воду искусственно «охлаждают при помощи брызгальных бассейнов или градирен.

Фиг. 4-4. Распределение потерь и полезной энергии на паротурбинной электростанции.

Цифрами от 7 до 6 показаны потери: 1 - потери в котле (ушло в окружающий воздух и на нагревание котельной); 2-потери с уходящими газами;^- потери в паропроводах; 4 - потери в турбине и на нагревание машинного зала; 5 -потери в генераторе; 6 - потери с охлаждающей водой.

На конденсационной электростанции внутренние потери и потери с охлаждающей водой составляют 77%. На теплоэлектроцентрали часть тепла, содержащегося в отборном и отработанном паре турбин, используется в промышленных предприятиях 7 и для бытовых нужд 8. Суммарные потери составляют 65%.

К брызгальным бассейнам теплая вода подходит под напором. Система труб распределяет эту воду между множеством сопел. Вода выходит из них небольшими фонтанами, распыляется на мелкие брызги, охлаждается окружающим воздухом, и, уже охлажденная, падает в бассейн.

Градирни представляют собой высокие, полые внутри башни. В нижней их части по окружности расположены решетки. Теплая вода льется на решетки мелким дождем. Воздух проходит сквозь этот искусственный дождь, нагревается за счет тепла воды и вместе с парами воды попадает в центральную часть градирни. Эта гигантская труба создает тягу. Теплый воздух поднимается вверх и выбрасывается наружу. Над градирнями всегда стоят огромные облака пара.

Теплоэлектроцентралями - сокращенно ТЭЦ - называются электростанции, которые кроме электроэнергии отдают потребителям еще и тепло в виде пара для технологических нужд фабрик и заводов и в виде горячей воды, идущей на отопление жилищ и бытовые нужды населения.

Теплоэлектроцентрали значительно экономичнее простых или, как их называют, конденсационных электростанций. На последних больше половины тепла, получившегося при сжигании топлива, уносится с охлаждающей водой. На теплоэлектроцентралях эти потери значительно меньше, так как часть отработанного в турбинах пара идет непосредственно к потребителям и на подогрев воды для отопления и горячего водоснабжения окружающего района.

Итак, наиболее распространенной у нас в СССР является тепловая электростанция, работающая на угле, сжигаемом в топках паровых котлов в пылевидном состоянии. Такую именно электростанцию и посетим.

Топлавоподана

Для того, чтобы выработать 1 квтч электроэнергии на современной электростанции, затрачивается всего несколько сот граммов угля, но даже «средняя» электростанция в сутки потребляет несколько тысяч тонн угля.

Вот распахнулись ворота электростанции и, лязгая буферами, медленно входит очередной состав тяжелыхФиг. 4-5. технологического процесса тепловой электростанции (топливоподача и котельная). Поданный в саморазгружающихся вагонах в бункеры разгрузочного сарая 1 кусковой уголь по системе транспортеров 2 попадает в бункеры 3 дробильной башни и через магнитный сепаратор 4 и колосниковьй грохот 5- в дробилку 6, где дробится до кусков размером 10- 13 ΛίΛί. После дробилки мелкий уголь по транспортеру 2 подается на транспортеры бункерной галлереи 7 и по ним в бункера сырого угля котлов 8.

Из бункеров сырого угля посредством ленточного питателя 9, скомбинированного с ленточными весами, уголь попадает в шаровую мельнипу 10, где размалывается и подсушивается топочными газами, подведенными к мельнице по газопроводу 11. Смесь угольной пыли и газов отсасывается из мельницы мельничным вентилятором (эксгаустером) 12, проходит через мельничньй сепаратор 13, где крупные частицы пыли отделяются и возвращаются по пылепроводу 14 обратно в мельницу. Мелкая пыль с газами попадает в пь левой циклон 15, где пыль отделяется от газов и ссыпается в бункер пыли 16. Из циклона пыли 15 газы отсасываются по газопроводу 17 и через горелку 19

Вдуваются в топку котла 20.

В-этот же поток газов посредством питателей пыли 18 подсыпается количество пыли, необходимое для данной нагрузки котла. Дутьевой вентилятор 21 забирает из верхней части котельной нагретый воздух, прогоняет его через воздухоподогреватель 22, где воздух доводится до температуры 300 - ^50°, и подает его в количестве, нужном для полного сгорания пыли, по воздушным коробам 23 к горелкам 19. Огненные факелы, выходящие из горелок, имеют температуру около 1 500°Раскаленные топочные газы, образующиеся при сгорании пыли, отдают часть своего тепла лучеиспусканием экранным трубам 24, отсасываются из топки дымососом 29 и им же по борову 30 выбрасываются в дымовую трубу 31.

По пути из топки газы омывают кипятильные трубы 25, пароперегреватель 26, водоподогреватель - водяной экономайзер 27 и воздухоподогреватель 22. Температура газои падает ниже 200°. В электрофильтрах 28 уходящие газы очищаются от золы, которая ссыпается· вместе со шлаком из топки в каналы гидрозолоудаления 12, из которых уносится мощным потоком воды.

Вода в котел поступает из машинного зала по трубопроводу питательной воды 33, проходит через водяной экономайзер 27, где подогревается приблизительно до точки кипения для данного давления, подается в барабан котла 34 и оттуда заполняет всю трубную систему. Образующийся пар отводится из верхней части балабана котла по пароотводящим трубам 35 в пароперегреватель 26. Перегретый пар через главную паровую задвижку 37 по паропроводу перегретого пара 36 идет в машинный зал к турбинам.

четырехосных саморазгружающихся гондол. Каждая способна! вместить до 60 т угля.

Состав подается на вагонные весы, Где каждая гондола взвешивается. Взвешивание топлива необходимо для ведения точного учета техникс-эко’номических показателей работы электростанции и денежных расчетов с железной дорогой и шахтами-поставщиками.

После взвешивания часть вагонов идет на угольный склад, где разгружается для создания запасов угля. Склад необходим на случай возможных перебоев с транспортом.

Угольные склады электростанции оснащены мощными погрузочно-|разгрузочными механизмами - портальными кранами, кабель-кранами, паровыми или электрическими самоходными грейферными кранами. Простой вагонов под погрузкой и разгрузкой сводится к минимуму.

В зависимости от условий топливоснабжения на складе хранится такое количество угля, которое достаточно для обеспечения работы станции с полной нагрузкой в течение нескольких дней или даже недель.

Другая часть вагонов, которая оставалась у вагонных весов, забирается станционным паровозом И 1 подается к длинному зданию - разгрузочному сараю. Открываются большие двустворчатые двери разгрузочного сарая, загораются предупредительные сигналы, звонит звонок и весь состав вместе с паровозом входит внутрь - под разгрузку.

Рабочие поворачивают запорные рычаги, раскрывают нижние боковые щиты гондол и черный поток угля льется в большие, покрытые железными решетками с крупными ячейками ямы, расположенные по обеим сторонам железнодорожного пути. Это бункеры разгрузки. Мощные электрические лампы под потолком кажутся тусклыми от поднимающихся вверх клубов пыли Уголь подали сухой, потому так многоФиг. 4-6. технологического процесса (продолжение фиг. 4-5). тепловой электростанции (машинный зал и электрическая часть).

Перегретый пар от котлов по паропроводу 1 поступает в паровую турбину 2, где тепловая энергия пара переходит в механическую. Ротор турбины вращает соединенный с ним ротор генератора Л. Отработавший в турбине пар поступает в 4, где сжижается - конденсируется, отдавая свое тепло циркуляционной воде. Превратившийся в воду пар - конденсат - откачивается конденсатным насосом б и направляется в аккумуляторные баки 7 и деаэратор б, в котором из нагретой воды удаляется кислород. В ‘4 деаэратор, кроме конденсата, направляется добавка воды по трубопроводу 12 из химической водоочистки для возмещения потерь конденсата, сюда же перекачивающим насосом 9 подается дренаж из сборных дренажных баков 10. В зависимости от потребления воды котельной конденсат или накапливается в аккумуляторном баке, или расходуется из него в деаэратор. Освобождение воды от растворенного в ней кислорода происходит при прохождении головки деаэратора 11.

Из деаэратора воду забирает питательный насос /5и под напором гонит ее через подогреватель 14, где вода подогревается отборным паром турбины и по напорному трубопроводу питательной воды 15 идет в котельную к котлам. Отборный пар из турбины, кроме подогревателя, подается также и в деаэраторную головку.

Мощным циркуляционным насосом 16 прокачивается через латунные трубы 5 конденсатора холодная вода (циркуляционная вода). Отработанный пар турбины омывает эти тпубы, отдает циркуляционной воде свое тепло и конденсируется. Теплая циркуляционная вода по трубопроводу 17 поступает в розетку 18 градирни, стекает оттуда по решетке 19 в виде мелкого дождя и, встречаясь с потоком воз·духа, идущего в башню 20 градирни, охлаждается и из приемного бассейна 2/, уже охлажденная, возвращается к всасу циркуляционного насоса 16.

От статора генератора выработанная электроэнергия кабелем 22 через генераторные разъединители 23 и масляный выключатель 24 отводится на сборные шины распределительного устройства 27. От сборных шин часть электроэнергии через понижающие трансформаторы собственных нужд щет на питание электродвигателей собственного расхода и на освещение станции. Основная часть электроэнергии через повысительные трансформаторы 26 и масляные выключатели 27 идет по высоковольтной линии 28 в общую высоковольтную.

сеть энергосистемы.

пыли. Но бывает и по-иному. В осеннее и зимнее время, когда идут сильные дожди и снегопады, влажность угля чрезвычайно увеличивается. Уголь смерзается и его приходится ломами выбивать из гондол.

Из бункеров разгрузки уголь по системе ленточных транспорте;ров, сначала подземных, а затем поднимающихся по наклонным галлереям вверх, попадает в дробильную башню. Здесь молотковые дробилки мельчат его на куски величиной в 10-13 мм. Отсюда уголь идет в бункеры сырого угля паровых котлов. На этом заканчивается хозяйство цеха топли воподачи.

Фабрика пара

Когда стоишь внизу в котельной, в проходе между котлами, то кажется, будто находишься на узкой улице между высокими домами. Только дома необычного вида, обшиты стальными листами, окрашенными в черный цвет, и опоясаны легкими решетчатыми стальными мостками и лестницами. Современные котлы достигают высоты пятиэтажного дома.

Со всех сторон, котла-гладкая черная обшивка. Только на самом верху виднеется серебряный купол, как будто внутрь котла вмурован дирижабль. Это - барабан котла. Купол стального· барабана покрыт слоем теплоизоляции и покрашен алюминиевой бронзой. В куполе есть люк, чтобы можно было залезать внутрь барабана при монтаже и ремонте.

В нескольких местах на обшивке котла устроены небольшие дверцы-гляделки. Откроем одну из них. Лицо сразу обдает жаром, нестерпимо яркий свет ударяет в глаза. Гляделки выходят в топку котла, где происходит сгорание топлива. Напротив одной из открытых горелок укреплена черная трубка со стек-лянной линзой на конце, вроде половинки бинокля. Это оптический пирометр, измеряющий температуру в топке. Внутри трубки пирометра помещена чувствительная . Провода от нее идут к гальванометру, укрепленному на контрольном тепловом щите котла. Шкала гальванометра градуирована в градусах.

Температура внутри топки котла больше полутора тысяч градусов, а обшивка его стенок только теплая. Пламя в топке со всех сторон окружено рядом труб, наполненных водой и соединенных с барабаном котла. Эти трубы - водяной экран, как их называют, - воспринимают лучистую энергию раскаленных газов топки. За трубами экрана идет кладка из огнеупорного кирпича. За слоем огнеупорного кирпича выложен слой изоляционного диатомитового кирпича с очень малой теплопроводностью. А за этим кирпичом непосредственно под стальными щитами обшивки проложен еще слой стеклянной ваты или асбеста. Трубы, выходящие из котла, покрыты толстым слоем тепловой изоляции. Все эти меры значительно уменьшают потери тепла в окружающую среду.

Внутри топки

Рядом котел остановлен на ремонт. Через проем в его стене можно пройти внутрь топки на временный дощатый помост, сделанный на время ремонта. Как все серо внутри!

Все четыре стены топки покрыты трубами водяного экрана. Трубы одеты слоем рыхлой золы и шлака. В некоторых местах на боковых стенках топки трубы разведены и видны зияющие черные отверстия - горелки, через которые угольная пыль вдувается в топку:

Внизу стены топки сужаются в виде опрокинутой пирамиды, переходящей в узкую шахту. Это шлаковый бункер и шлаковая шахта. Сюда падает образующийся при горении угольной пыли шлак. Из шлаковых шахт шлак и зола смываются сильной струей воды в каналы гидрозолоудаления или ссыпаются в вагонетки и вывозятся на золоотвалы.

Когда стоишь внизу топки, то плохое освещение вначале скрадывает высоту топочного пространства. Но эта высота становится ощутимой, если окинуть взглядом одну из труб водяного экрана от самого низа до верха.

Внизу на уровне помоста трубы кажутся толщиной в руку и промежутки между ними ясно различимы. Вверху грубы изгибаются, образуя плоский свод. И там вверху эти трубы кажутся соломинками, уложенными в ровные ряды. Надо закинуть голову, чтобы осмотреть свод топки. Невольно рот открывается и в него сыплется сверху зола.

При работе котла все его водяные трубы непрерывно покрываются слоем нагара, слоем золы и сажи. Это ухудшает теплопередачу от раскаленных газов к воде в трубах. Во время ремонта котла все его водяные трубы тщательно очищаются.

Конструкторы паровых котлов подбирают скорость раскаленных газов, летящих сквозь пучки труб, достаточно высокой, чтобы уменьшить осаждение на них твердых частиц. Не то образовались бы наросты, подобные сталактитам и сталагмитам в пещерах.

Кроме того, во время работы котла полагается время от времени обдувать его трубы сильной струей сжатого воздуха или пара.

Объем топки котла более тысячи кубических метров. Страшно подумать, что творится в этом огромном пространстве во время работы котла, когда оно все заполнено бушующим пламенем и вихрями раскаленных газов.

До вчерашнего дня в моем представлении все угольные электростанции были примерно одинаковыми и представляли из себя идеальные съемочные площадки фильмов ужасов. С почерневшими от времени конструкциями, котлоагрегатами, турбинами, миллионами различных труб и их хитрых сплетений с щедрым слоем черной угольной пыли. Редкие рабочие, больше похожие на шахтеров, в скудном освещении зеленых газовых ламп ремонтируют какие-то сложные агрегаты, тут и там, шипя, вырываются клубы пара и дыма, на полу разлились густые лужи из жиж темного цвета, повсюду что-то капает. Вот примерно такими я видел угольные станции и считал, что век их уже уходит. Будущее за газом - думал я.

Оказывается вовсе нет. Вчера я посетил новейший угольный энергоблок Черепетской ГРЭС в Тульской области. Оказывается, что современные угольные станции вовсе не чумазые, и дым из их труб идет не густой и не черный.

1. Черепетская ГРЭС – первая в Европе мощная паротурбинная электростанция сверхвысокого давления. Станция расположена в городе Суворов на реке Черепеть. Место для электростанции было выбрано по двум критериям: с одной стороны недалеко от шахт Подмосковного угольного бассейна, с другой - сравнительно недалеко от потребителей электроэнергии, расположенных в пределах Московской, Тульской, Орловской, Брянской и Калужской областей.

Несколько слов о принципе работы ГРЭС (спасибо Википедии):

В котел с помощью насосов подается под большим давлением вода, топливо и атмосферный воздух. В топке котла происходит процесс горения - химическая энергия топлива превращается в тепловую. Вода протекает по трубной системе, расположенной внутри котла.

(Фотография газового котла из репортажа с )

Сгорающее топливо является мощным источником теплоты, передающейся воде, которая нагревается до температуры кипения и испаряется. Получаемый пар в этом же котле перегревается сверх температуры кипения, примерно до 540 °C и под высоким давлением 13–24 МПа по одному или нескольким трубопроводам подается в паровую турбину.

Паровая турбина, электрогенератор и возбудитель составляют в целом турбоагрегат. В паровой турбине пар расширяется до очень низкого давления (примерно в 20 раз меньше атмосферного), и потенциальная энергия сжатого и нагретого до высокой температуры пара превращается в кинетическую энергию вращения ротора турбины. Турбина приводит в движение электрогенератор, преобразующий кинетическую энергию вращения ротора генератора в электрический ток.

2. Согласно проектному решению, строительство третьей очереди осуществлялось в границах действующей Черепетской ГРЭС, что позволило частично использовать производственную инфраструктуру станции для обеспечения работы нового оборудования. Пусковой комплекс включает в себя главный корпус, пристанционный узел, системы топливоподачи и шлакоудаления, техводоснабжения и водоподготовки, очистные сооружения.

3. Забор воды осуществляется непосредственно из Черепетского водохранилища.

4. Вода проходит химическую очистку и глубокое обессоливание, чтобы в паровых котлах и турбинах не появлялись отложения на внутренних поверхностях оборудования.

5. Железнодорожным транспортом на станцию доставляются уголь и мазут.

6. Вагоны с углем разгружаются вагоноопрокидывателями, далее уголь по транспортерам поступает на открытый склад угля, где распределяется и срабатывается кранами-перегружателями на первой и второй очередях, на третьей рапределение идет бульдозерами, а сработка - роторным экскаватором.

7. Так уголь попадает на участки дробильной установки для предварительного измельчения угля и последующего пылеприготовления. В сам котел уголь подается в виде смеси угольной пыли и воздуха.

9. Котельная установка располагается в котельном отделении главного корпуса. Сам котел - это что-то гениальное. Огромный сложный механизм высотой с 10-этажный дом.

13. Гулять по лабиринтам котельной установки можно вечно. Время, отведенное на съемку дважды успело закончиться, но оторваться от этой промышленной красоты было невозможно!

15. Галереи, лифтовые шахты, переходы, лестницы и мосты. Одним словом - космос)

16. Лучи солнца осветили крошечного на фоне всего происходящего Виталика dervishv , и я невольно задумался, что все эти сложные гигантские конструкции придумал и построил человек. Вот такой маленький человек придумал десятиэтажные печи, чтобы в промышленных масштабах вырабатывать электроэнергию из полезного ископаемого.

17. Красота!

19. За стеной от котельной установки располагается машинный зал с турбогенераторами. Еще одно гигантское помещение, более просторное.

20. Вчера был торжественно введен в эксплуатацию энергоблок №9, что явилось завершающим этапом проекта расширения Черепетской ГРЭС. Проект включал строительство двух современных пылеугольных энергоблоков мощностью по 225 МВт каждый.

21. Гарантированная электрическая мощность нового энергоблока - 225 МВт;
Электрический КПД - 37.2 %;
Удельный расход условного топлива на выработку электроэнергии - 330 гут/кВт*ч.

23. В состав основного оборудования входят две паровые конденсационные турбины производства ОАО «Силовые машины» и два котлоагрегата, производителя ОАО «ЭМАльянс». Основное топливо нового энергоблока - Кузнецкий каменный уголь марки ДГ

24. Щит управления.

25. Энергоблоки оснащены первой на российском рынке интегрированной системой сухой пыле-сероочистки дымовых газов с электростатическими фильтрами.

26. Дымовая труба высотой 120 метров.

27. Блочный трансформатор.

28. ОРУ.

29. Ввод нового энергоблока позволит вывести из эксплуатации устаревшее угольное оборудование первой очереди без снижения объема выработки электроэнергии и суммарной установленной мощности станции.

30. Вместе с новым энергоблоком были построены две 87-метровые градирни - часть системы технического водоснабжения, которая обеспечивает подачу большого количества холодной воды для охлаждения конденсаторов турбин.

31. Семь пролетов по 12 метров. Снизу такая высота кажется не такой серьезной.

33. На верхней площадке трубы было одновременно и жарко и прохладно. Фотоаппарат постоянно запотевал.

34. Вид с градирни на третью очередь с двумя новыми энергоблоками. Новые энергомощности станции спроектированы таким образом, чтобы значительно снизить выбросы загрязняющих веществ, сократить пылевыделение при работе на складе угля, уменьшить количество потребляемой воды, а также исключить возможность загрязнения окружающей среды сточными водами.

36. Внутри градирни все оказалось довольно просто и скучно)

38. На фотографии хорошо видны все три очереди станции. Постепенно старые энергоблоки выведут из эксплуатации и разберут. Такие дела.

39. Большое спасибо Капитанову Сергею Михайловичу за интереснейшую экскурсию и терпение!

40. Выражаю благодарность пресс-службе «Интер РАО» за организацию съемки и всем коллегам фотографам за отличную компанию!

Принцип работы теплоэлектроцентрали (ТЭЦ) основан на уникальном свойстве водяного пара – быть теплоносителем. В разогретом состоянии, находясь под давлением, он превращается в мощный источник энергии, приводящий в движение турбины теплоэлектростанций (ТЭС) — наследие такой уже далекой эпохи пара.

Первая тепловая электростанция была построена в Нью-Йорке на Перл-Стрит (Манхэттен) в 1882 году. Родиной первой российской тепловой станции, спустя год, стал Санкт-Петербург. Как это ни странно, но даже в наш век высоких технологий ТЭС так и не нашлось полноценной замены: их доля в мировой энергетике составляет более 60 %.

И этому есть простое объяснение, в котором заключены достоинства и недостатки тепловой энергетики. Ее «кровь» — органическое топливо – уголь, мазут, горючие сланцы, торф и природный газ по-прежнему относительно доступны, а их запасы достаточно велики.

Большим минусом является то, что продукты сжигания топлива причиняют серьезный вред окружающей среде. Да и природная кладовая однажды окончательно истощится, и тысячи ТЭС превратятся в ржавеющие «памятники» нашей цивилизации.

Принцип работы

Для начала стоит определиться с терминами «ТЭЦ» и «ТЭС». Говоря понятным языком – они родные сестры. «Чистая» теплоэлектростанция – ТЭС рассчитана исключительно на производство электроэнергии. Ее другое название «конденсационная электростанция» – КЭС.


Теплоэлектроцентраль – ТЭЦ — разновидность ТЭС. Она, помимо генерации электроэнергии, осуществляет подачу горячей воды в центральную систему отопления и для бытовых нужд.

Схема работы ТЭЦ достаточно проста. В топку одновременно поступают топливо и разогретый воздух — окислитель. Наиболее распространенное топливо на российских ТЭЦ – измельченный уголь. Тепло от сгорания угольной пыли превращает воду, поступающую в котел в пар, который затем под давлением подается на паровую турбину. Мощный поток пара заставляет ее вращаться, приводя в движение ротор генератора, который преобразует механическую энергию в электрическую.

Далее пар, уже значительно утративший свои первоначальные показатели – температуру и давление – попадает в конденсатор, где после холодного «водяного душа» он опять становится водой. Затем конденсатный насос перекачивает ее в регенеративные нагреватели и далее — в деаэратор. Там вода освобождается от газов – кислорода и СО 2 , которые могут вызвать коррозию. После этого вода вновь подогревается от пара и подается обратно в котел.

Теплоснабжение

Вторая, не менее важная функция ТЭЦ – обеспечение горячей водой (паром), предназначенной для систем центрального отопления близлежащих населенных пунктов и бытового использования. В специальных подогревателях холодная вода нагревается до 70 градусов летом и 120 градусов зимой, после чего сетевыми насосами подается в общую камеру смешивания и далее по системе тепломагистралей поступает к потребителям. Запасы воды на ТЭЦ постоянно пополняются.

Как работают ТЭС на газе

По сравнению с угольными ТЭЦ, ТЭС, где установлены газотурбинные установки, намного более компактны и экологичны. Достаточно сказать, что такой станции не нужен паровой котел. Газотурбинная установка – это по сути тот же турбореактивный авиадвигатель, где, в отличие от него, реактивная струя не выбрасывается в атмосферу, а вращает ротор генератора. При этом выбросы продуктов сгорания минимальны.

Новые технологии сжигания угля

КПД современных ТЭЦ ограничен 34 %. Абсолютное большинство тепловых электростанций до сих пор работают на угле, что объясняется весьма просто — запасы угля на Земле по-прежнему громадны, поэтому доля ТЭС в общем объеме выработанной электроэнергии составляет около 25 %.

Процесс сжигания угля многие десятилетия остается практически неизменным. Однако и сюда пришли новые технологии.


Особенность данного метода состоит в том, что вместо воздуха в качестве окислителя при сжигании угольной пыли используется выделенный из воздуха чистый кислород. В результате, из дымовых газов удаляется вредная примесь – NОx. Остальные вредные примеси отфильтровываются в процессе нескольких ступеней очистки. Оставшийся на выходе СО 2 закачивается в емкости под большим давлением и подлежит захоронению на глубине до 1 км.

Метод «oxyfuel capture»

Здесь также при сжигании угля в качестве окислителя используется чистый кислород. Только в отличие от предыдущего метода в момент сгорания образуется пар, приводящий турбину во вращение. Затем из дымовых газов удаляются зола и оксиды серы, производится охлаждение и конденсация. Оставшийся углекислый газ под давлением 70 атмосфер переводится в жидкое состояние и помещается под землю.

Метод «pre-combustion»

Уголь сжигается в «обычном» режиме – в котле в смеси с воздухом. После этого удаляется зола и SO 2 – оксид серы. Далее происходит удаление СО 2 с помощью специального жидкого абсорбента, после чего он утилизируется путем захоронения.

Пятерка самых мощных теплоэлектростанций мира

Первенство принадлежит китайской ТЭС Tuoketuo мощностью 6600 МВт (5 эн/бл. х 1200 МВт), занимающей площадь 2,5 кв. км. За ней следует ее «соотечественница» — Тайчжунская ТЭС мощностью 5824 МВт. Тройку лидеров замыкает крупнейшая в России Сургутская ГРЭС-2 – 5597,1 МВт. На четвертом месте польская Белхатувская ТЭС – 5354 МВт, и пятая – Futtsu CCGT Power Plant (Япония) – газовая ТЭС мощностью 5040 МВт.


ТЭЦ — тепловая электростанция, которая производит не только электроэнергию, но и дает тепло в наши дома зимой. На примере Красноярской ТЭЦ посмотрим как работает почти любая теплоэлектростанция.

В Красноярске есть 3 теплоэлектроцентрали, суммарная электрическая мощность которых всего 1146 МВт (для сравнения, одна только наша Новосибирская ТЭЦ 5 имеет мощность 1200 МВт), но примечательна была для меня именно Красноярская ТЭЦ-3 тем, что станция новая - ещё не прошло и года, как первый и пока единственный энергоблок был аттестован Системным оператором и введён в промышленную эксплуатацию. Поэтому мне удалось поснимать ещё не запылившуюся, красивую станцию и узнать много нового для себя о ТЭЦ.

В этом посте, помимо технической информации о КрасТЭЦ-3, я хочу раскрыть сам принцип работы почти любой теплоэлектроцентрали.

1. Три дымовые трубы, высота самой высокой из них 275 м, вторая по высоте - 180м



Сама аббревиатура ТЭЦ подразумевает собой, что станция вырабатывает не только электричество, но и тепло (горячая вода, отопление), причем, выработка тепла возможно даже более приоритетна в нашей известной суровыми зимами стране.

2. Установленная электрическая мощность Красноярской ТЭЦ-3 208 МВт, а установленная тепловая мощность 631,5 Гкал/ч

Упрощенно принцип работы ТЭЦ можно описать следующим образом:

Всё начинается с топлива. В роли топлива на разных электростанциях могут выступать уголь, газ, торф, горючие сланцы. В нашем случае это бурый уголь марки Б2 с Бородинского разреза, расположенного в 162 км от станции. Уголь привозят по железной дороге. Часть его складируется, другая часть идёт по конвеерам в энергоблок, где сам уголь сначала измельчается до пыли и потом подаётся в камеру сгорания - паровой котёл.

Паровой котёл - это агрегат для получения пара с давлением выше атмосферного из непрерывно поступающей в него питательной воды. Происходит это засчет теплоты, выделяющейся при сгорании топлива. Сам котёл выглядит довольно внушительно. На КрасТЭЦ-3 высота котла 78 метров (26-этажный дом), а весит он более 7000 тонн.

6. Паровой котёл марки Еп-670, произведенный в Таганроге. Производительность котла 670 тонн пара в час

Я позаимствовал с сайта energoworld.ru упрощённую схему парового котла электростанции, чтобы вам было понятно его устройтсво

1 — топочная камера (топка); 2 — горизонтальный газоход; 3 — конвективная шахта; 4 — топочные экраны; 5 — потолочные экраны; 6 — спускные трубы; 7 — барабан; 8 — радиационно-конвективный пароперегреватель; 9 — конвективный пароперегреватель; 10 — водяной экономайзер; 11 — воздухоподогреватель; 12 — дутьевой вентилятор; 13 — нижние коллекторы экранов; 14 — шлаковый комод; 15 — холодная коронка; 16 — горелки. На схеме не показаны золоуловитель и дымосос.

7. Вид сверху

10. Отчётливо виден барабан котла. Барабан представляет собой цилиндрический горизонтальный сосуд, имеющий водяной и паровой объемы, которые разделяются поверхностью, называемой зеркалом испарения.

Благодаря большой паропроизводительности котёл имеет развитые поверхности нагрева, как испарительные, так и пароперегревательные. Топка у него призматическая, четырёхугольная с естественной циркуляцией.

Пара слов о принципе работы котла:

В барабан, проходя экономайзер, попадает питательная вода, по спускным трубам спускается в нижние коллекторы экранов из труб, по этим трубам вода поднимается вверх и, соответственно, нагревается, так как внутри топки горит факел. Вода превращается в паро-водяную смесь, часть её попадает в выносные циклоны и другая часть обратно барабан. И там, и там происходит разделение этой смеси на воду и пар. Пар уходит в пароперегреватели, а вода повторяет свой путь.

11. Остывшие дымовые газы (примерно 130 градусов), выходят из топки в электрофильтры. В электрофильтрах происходит очистка газов от золы, зола удаляется на золоотвал, а очищенные дымовые газы уходят в атмосферу. Эффективная степень очистки дымовых газов составляет 99,7%.
На фотографии те самые электрофильтры.

Проходя через пароперегреватели пар нагревается до температуры 545 градусов и поступает в турбину, где под его давлением вращается ротор турбогенератора и, соответственно, вырабатывается электроэнергия. Следует отметить, что в конденсационных электростанциях (ГРЭС) система обращения воды полностью замкнута. Весь пар, проходя сквозь турбину, охлаждается и конденсируется. Снова превратившись в жидкое состояние, вода используется заново. А в турбинах ТЭЦ не весь пар попадает в конденсатор. Осуществляются отборы пара - производственные (использование горячего пара на каких-либо производствах) и теплофикационные (сеть горячего водоснабжения). Это делает ТЭЦ экономически более выгодной, но у неё есть свои минусы. Недостатком теплоэлектроцентралей является то, что они должны быть построены недалеко от конечного потребителя. Прокладка теплотрасс стоит огромных денег.

12. На Красноярской ТЭЦ-3 используется прямоточная система технического водоснабжения, это позволяет отказаться от использование градирен. То есть воду для охлаждения конденсатора и использования в котле берут прямо из Енисея, но перед этим она проходит очистку и обессоливание. После использования вода возвращается по каналу обратно в Енисей, проходя систему рассеивающего выпуска (перемешивание нагретой воды с холодной, дабы снизить тепловое загрязнение реки)

14. Турбогенератор

Я надеюсь, мне удалось внятно описать принцип работы ТЭЦ. Теперь немного о самой КрасТЭЦ-3.

Строительство станции началось ещё в далёком 1981 году, но, как у нас в России бывает, из-за развалов СССР и кризисов построить ТЭЦ вовремя не получилось. С 1992 г до 2012 г станция работала как котельная - нагревала воду, но электричество вырабатывать научилась только 1-го марта прошлого года.

Красноярская ТЭЦ-3 принадлежит Енисейской ТГК-13. На ТЭЦ работает около 560 человек. В настоящее время Красноярская ТЭЦ-3 обеспечивает теплоснабжение промышленных предприятий и жилищно-коммунального сектора Советского района г. Красноярска - в частности, микрорайоны «Северный», «Взлётка», «Покровский» и «Иннокентьевский».

17.

19. ЦПУ

20. Ещё на КрасТЭЦ-3 функционируют 4 водогрейных котла

21. Глазок в топке

23. А это фото снято с крыши энергоблока. Большая труба имеет высоту 180м, та что поменьше - труба пусковой котельной.

24. Трансформаторы

25. В качестве распределительного устройства на КрасТЭЦ-3 используется закрытое распределительное устройство с элегазовой изоляцией (ЗРУЭ) на 220 кВ.

26. Внутри здания

28. Общий вид распределительного устройства

29. На этом всё. Спасибо за внимание