Черная металлургия относится к числу наиболее экологоемких отраслей. С загрязнением воздуха и воды, образованием твердых отходов связаны все технологии и стадии металлургического производства. Наибольшие объемы выбросов связаны с традиционным способом получения стали - доменным производством чугуна, с последующим переделом его в сталь. Значительно меньшее загрязнение имеет место при прямом восстановлении железа непосредственно из руды в электропечах. Это позволяет также избавиться от ряда промежуточных стадий, сопряженных со значительным загрязнением, и одновременно повысить качество продукции. Поэтому, мировой тенденцией последних десятилетий является постепенное свертывание доменных и мартеновских производств, вытесняемых электросталеплавильными. Одновременно с этим, благодаря повышению качества изделий, сокращаются общие объемы выплавки металла и всей сопряженной нагрузки на среду.

Высокая водоемкость металлургических производств (40-50 м З на т чугуна, 6 м З на 1 т стали, 10-15 м З на 1 т про ката) связана с использованием воды, главным образом, для охлаждения (70% в черной металлургии, 80% в цветной металлургии). Снижение водоемкости металлургических производств достигается благодаря использованию систем оборотного водоснабжения.

При выплавке 1 т чугуна и стали образуется 0,2-1 т шлака. Доменные шлаки состоят из оксидов кремния (40-44%), кальция (30-50%), алюминия (5­16%), магния (1 -7%), железа (0,2-4,5%), марганца (0,5-3%), Сталеплавильные шлаки отличаются от доменных более высоким содержанием оксидов железа (5-16%) и марганца (5-9%). Микроэлементный состав зависит от перерабатываемого сырья, наиболее характерными являются примеси хрома и ванадия. Доменный и сталеплавильный шлак широко используется в дорожном строительстве как заменитель щебня, разновидности шлака с низким содержанием микроэлементов могут также использоваться для известкования кислых почв.

Цветная металлургия, имея схожую с черной металлургией структуру производства и характер воздействий на окружающую среду, отличается значительно более высокой отходностью. Одним из наиболее распространенных классов руд, используемых цветной металлургией, являются сульфиды. Переработка таких руд сопровождается выделением больших объемов кислотообразующих оксидов серы. Их утилизация путем переработки на серную кислоту с экологической точки зрения, весьма желательна, но не всегда возможна по технико­экономическим причинам, особенно при размещений предприятий в отдаленных районах (так, работающие на сульфидных: заводы Норильска, выбрасывают в год до 2 млн. Т диоксида серы).

Производство алюминия отличается высокой энергоемкостью, в процессе плавки (электролиза) для поддержания требуемого состава расплава используются фториды натрия и алюминия, которые частично испаряются и диссоциируют, с выделением фтора и его газообразных соединений.

В зависимости от перерабатываемого сырья, выход шлака в цветной металлургии колеблется от 10 до 200 т на 1 т получаемого металла. Руды

цветных металлов, как правило, являются многокомпонентными. Поэтому шлаки предприятий цветной металлургии обычно содержат значительные количества неиспользованных компонентов: 0,4-0,6% меди в медеплавильных шлаках, о г 6 до 22% цинка и 1 -3,5% свинца в шлаках свинцовых производств, ДО 1 % хрома в шлаках от производства никеля и Т.д. Из-за высокого содержания микроэлементов, возможности использования шлаков цветной металлургии ограничены.

Черная металлургия является одним из крупнейших загрязнителей атмосферного воздуха, воды. Поэтому необходимо значительно улучшить очистку выбросов в атмосферу, переходить на замкнутый цикл использования воды

На сегодня актуальным остается вопрос дальнейшей реконструкции действующих предприятий, повышение доли электронного кислородно-конвертерной стали, проката в общем объеме разнообразия я ее ассортимента, повы-"ния каче.

Цветная металлургия

. Цветная металлургия не приобрела в Украине значительное развитие и состоит лишь из некоторых производств. Это связано с незначительными запасами сырья

Для выплавки большинства тяжелых металлов необходимо значительное количество топлива (коксующегося угля). Такие производства называют энергоемкими

Определяющими факторами размещения предприятий цветной металлургии является сырьевой и топливно-энергетический. Горно-обогатительные комбинаты тяготеют к районам добычи руды и ориентируются на водные рес ресурсы (процесс обогащения требует много воды). Металлургические заводы, выплавляют тяжелые цветные металлы из концентратов, размещают преимущественно вблизи топливных баз, а предприятия по выплавке легких ме талей - вблизи источников дешевой электроэнергииії.

Основные отрасли и их размещение

Среди отраслей цветной металлургии в Украине ведущее место занимает производство легких металлов, в частности алюминия. Алюминиевая промышленность работает на привозном (из. Бразилии,. Гвинеи,. Ямайки,. Австралии) б бокситах, которые перерабатываются на. Николаевском глиноземном заводе. Глинозем для дальнейшей переработки поступает на. Днепровский алюминиевый завод в. Запорожье. Завод алюминиевых сплавов работает в. Свердловс ьку (Луганская облбл.).

Титано-магниевый комбинат, расположенный в. Запорожье, также ориентируется на дешевую электроэнергию магниевого сырье привозят из. Стебника (Львовская обл),. Калуша (Ивано-Франковская обл) и. Сиваша, а титано ную - с. Иршанского горно-обогатительного комбината (Житомирская обл),. Крымского завода диоксида титана, а также месторождений. Днепропетровской области. На базе титановых песков. Малишивського месторождения пр ацюе в. Вольногорске (Днепропетровская область). Верхнеднепровский горно-металлургический комбинат, который производит ильменитовый, рутиловый и циркониевый концентраттрати.

На базе местных руд, электроэнергии. Южно-Украинской. АЭС и привозные угле работает. Побужский никелевый завод. Константиновский цинковый завод, построенный в 1930-х гг, ориентировался на топливные ресу урсы. Донбасса и цинковый концентрат из. Казахстана,. России. Современное, цинковое производство более нуждается в электроэнергии, чем топлива. Цинк из. Константиновки частично поступает на. Артемовский завод, где производят яють латунь (сплав меди и цинка), латунный и медный прокат. Медь и свинец импортируемых из. России. На. Донбассе работает и древнейший. Никитовский ртутный комбинат, имеющий карьеры по добыче ртутной руды (к иновари) и обогатительную фабрикабрику.

В Украине сформировались два основных районы размещения предприятий цветной металлургии -. Донецкий и. Приднепровский

Проблемы и перспективы развития

Проблемы цветной металлургии связаны с потребностями расширения сырьевой базы предприятий, дальнейшей модернизации с целью полного использования всех компонентов руд и отходов производства, повнишог го очистки выбросов в окружающую среду. Решать сырьевую проблему должно помочь освоению давно известных запасов алюминиевого сырья в. Днепропетровской и. Закарпатской областях, разведанных запасов меди в. Волынской области, золота не только в. Закарпатье, но и вблизи. Кривого. Рога и в. Донецкой области, свинцово-цинковых руд на. Донбассе. Важными направлениями развития отрасли является расширение производства цветных металлов из вторичного сырья, металлолома, переработка отходов, увеличения экспортной ориентации некоторых производств (ртутного, титано-магниевогоо).

Основные тенденции развития металлургической отрасли России в последние годы соответствуют в определенной степени общемировым. Важнейшие из них:

  • · рост объемов производства и потребления металлопродукции;
  • · повышение качественных характеристик продукции и совершенствование ее сортамента;
  • · значительная доля продукции, поставляемой на экспорт;
  • · наличие импортных поставок;
  • · ресурсосбережение и снижение негативного экологического воздействия на фоне повышения стоимости энергоресурсов и требований к охране окружающей среды;
  • · выход предприятий отрасли на IPO;
  • · приобретение компаниями активов смежных металлопотребляющих отраслей и объектов инфраструктуры (энергетические мощности, порты и т.д.);
  • · укрупнение компаний-производителей и выход их за пределы России в русле глобализации мировой экономики.

Действия, предпринятые Правительством Российской Федерации по защите внутреннего рынка, отмене импортных пошлин на основные виды высокотехнологичного оборудования, оказанию политической поддержки российским компаниям по приобретению активов горно-металлургических предприятий за рубежом, уменьшению ограничений, действующих на внешних рынках в отношении российской металлопродукции и другие мероприятия, способствовали тому, что в последние 7 лет (2002-2007 гг.) российская металлургическая промышленность демонстрировала положительные результаты:

  • - наблюдался рост производства (в 2007 году по сравнению с уровнем 2000 года)
  • - инвестиции возросли - в 3,6 раза (в текущих ценах);
  • - сальдированный финансовый результат - почти в 4 раза;

экспорт (в стоимостном выражении) - в 3,1 раза;

  • - уровень рентабельности продаж составил в среднем (за период 2005-2007 гг.) - 25,3%;
  • - рост средней заработной платы - 15-20% в год.

Отрасль одной из первых в промышленности России приступила к реализации программ реструктуризации производства и сокращения неэффективных мощностей, что позволило:

  • · выстроить вертикально-горизонтальные структуры внутри отрасли;
  • · увеличить производство конкурентоспособной продукции;
  • · снизить издержки и негативное воздействие на окружающую среду;
  • · укрепить свои позиции на мировом рынке (в отдельных сегментах - лидирующие);
  • · минимизировать социальные проблемы.

Таким образом, завершился важный этап развития отрасли и начался переход к следующему этапу, который в основном предусматривает:

  • · активное внедрение инноваций;
  • · ресурсо-энергосбережение с учетом одобренных Правительством Российской Федерации предельных уровней цен (тарифов) на продукцию (услуги) субъектов естественных монополий на 2008 год и на период до 2010 года;
  • · снижение негативного воздействия на окружающую среду, в том числе в рамках реализации проектов совместного осуществления;
  • · повышение конкурентоспособности продукции и производительности труда;
  • · усиление своих позиций на мировых рынках, в том числе путем процессов слияния и поглощения, международной гармонизации в области систем аккредитации и стандартизации;
  • · взаимодействие с металлопотребляющими отраслями, где есть значительный государственный капитал: ТЭК, ОПК, атомное машиностроение, авиастроение, судостроение, автомобилестроение, железнодорожный транспорт, а также реализация нацпроектов, обеспечивающая устойчивый спрос внутреннего рынка на металлопродукцию.

В целом российский металлургический комплекс - это успешный в инвестиционном отношении сегмент экономики. На большинстве предприятий отрасли уже приняты перспективные инвестиционные программы развития на периоды до 2010-2015 годы. По этим программам уже на период 2007-2008 годы предусматриваются значительные объемы инвестиций в реконструкцию и модернизацию производств, а также создание мощностей по выпуску конкурентоспособной продукции с высокой долей добавленной стоимости.

Стратегии развития металлургической промышленности на период до 2015 года.

«Стратегия...» предусматривает решение следующих приоритетных задач:

  • · удовлетворение спроса на металлопродукцию на внутреннем рынке (по всей требуемой номенклатуре), в частности, спроса новых промышленных регионов, спроса на металлопродукцию для реализации важнейших инвестпроектов, национальных проектов;
  • · координация планов развития предприятий горно-металлургического комплекса с генеральными схемами размещения объектов электроэнергетики, развития трубопроводного транспорта и сети железных дорог, а также стратегиями развития других отраслей промышленности и регионов России;
  • · укрепление позиций России на мировом рынке металлопродукции и рынке СНГ, защита на этих рынках позиций экспортеров;
  • · повышение конкурентоспособности металлопродукции, расширение производства продукции с повышенной добавленной стоимостью, снижение ресурсоемкости производства;
  • · обеспечение воспроизводства минерально-сырьевой базы;
  • · уменьшение зависимости металлургии России от импорта металлопродукции и сырья;
  • · снижение вредного воздействия предприятий отрасли на окружающую среду (металлургический комплекс относится к числу наиболее экологически неблагоприятных сфер экономики России - 35% промышленных выбросов в атмосферу, 17% сбросов загрязненных сточных вод). Ратификация Россией Киотского протокола предусматривает в качестве необходимого условия динамичное ужесточение предельных значений выбросов парниковых газов и активизацию всей природоохранной деятельности предприятий комплекса.

Сроки реализации «Стратегии...»: начало - 2007 год, окончание - 2015 год. «Стратегию...» предполагается реализовать в три временных этапа: первый - 2007-2008 годы, второй -2009-2010 годы и третий - 2011-2015 годы.

На первом этапе (2007-2008 годы)развитие металлургического комплекса будет ориентировано, в основном, на более эффективное использование имеющихся мощностей.

На втором этапе (2009-2010 годы) предполагается ввод новых мощностей, ускоренное техническое перевооружение и обновление сортамента продукции, а также решение комплекса приоритетных задач. Модель ускоренного технического перевооружения предусматривает улучшение инвестиционного климата, проведение дальнейших структурных преобразований, снижение износа основных фондов, повышение технологического уровня.

На третьем этапе (2011-2015 годы) помимо ввода новых мощностей прогнозируется закрепление и развитие положительных тенденций, направленных на значительное повышение конкурентоспособности продукции. Особенности развития. Сегодня металлургия наряду сотраслями топливно-энергетического и частью оборонного комплекса представляет наиболее конкурентоспособный сектор российского хозяйства. В настоящее время экспортируется около половины черных металлов, более 85% первичного алюминия, около 95% никеля, 75% титана, около 40% меди, не менее 70% олова и цинка и т.д.

Довольно высокая ценовая конкурентоспособность российской металлопродукции на внешнем рынке объясняется в первую очередь наличием собственных ресурсов минерального сырья, низкими (пока) внутренними ценами на энергоносители (при более высоких удельных энергозатратах на переделах) и существенно более низкой заработной платой (при более высоких удельных трудозатратах и низкой производительности труда). В целом выход российской металлургии на мировой рынок следует признать важнейшим результатом рыночных реформ. Кроме валютной выручки, которая является основным источником инвестиционных ресурсов, экспорт стимулирует также рост культуры производства, качества и технического уровня продукции. В настоящее время отечественная металлургия, сохраняя роль важнейшего системообразующего фактора общехозяйственного роста, тесно интегрирована в мировую экономику и в целом развивается в соответствии с мировыми тенденциями.

Проблемы развития Анализ номенклатуры продукции, выпускаемой металлургическими заводами, а он определяется спросом, свидетельствует о том, что постоянно уменьшается выпуск качественных легированных сталей, как по объему, так и по номенклатуре. В России, где около 70% территории находится в зоне холодного и очень холодного климата, практически не выпускаются и не используются для производства техники «для Севера» стали, легированные ниобием и ванадием. В Японии, которая по средней и минимальной температурам находится в гораздо более мягких условиях, чем Россия, расход ниобия на 1 условную тонну стали составляет 94 г, в Германии, тоже не самой холодной стране, - 85 г, а в России - около 4 г.

Отсутствие регламентированных государством нормативов по использованию металлов и других материалов для производства машин и механизмов, сооружений ответственного назначения, в том числе используемых в жилищном, промышленном, социально-культурном строительстве, машиностроении, приводит к повышенной аварийности в хозяйственном комплексе страны. Отсюда разрушения зданий, падение мостов, огромное количество пришедшей в негодность техники на просторах газовых и нефтяных компаний.

Серьезной проблемой в металлургии России является низкий процент металлопродукции с защитными покрытиями. И если для листа и труб вопросы покрытий в какой-то степени решаются, то арматура, швеллеры, крепежные изделия и т.п. практически не защищаются, что существенно снижает их технологическую ценность. Работы в этом направлении ведутся, но без регламентирования этого проекта со стороны государства, только рыночный механизм еще долго не обеспечит решения проблемы.

Значительное число научных разработок, новых технических решений передела комплексных руд не получило реализации, главным образом, вследствие узкоотраслевого подхода к решению проблемы.

Наиболее крупные запасы комплексных железосодержащих руд представлены титаномагнетитами. Степень извлечения ванадия - всего около 30%, титан не извлекается. Практически забыты намерения извлекать из этих руд золото, скандий.

Особенно катастрофическое положение с производством титана металлического и диоксида титана. В 2006 г. произведено металлического титана всего 25 тыс. т, что составляет около 23% от уровня 1989 г. Из этого количества 90% продано за рубеж для обеспечения потребностей зарубежной авиационной, судостроительной промышленностей. Что касается пигментного диоксида титана (основного компонента для высокотемпературных и обычных красителей), то он давно в России не производится, хотя, по данным Всероссийского НИИ минерального сырья им. Н.М.Федоровского, сырье для этого производства имеется.

Создание холдинговых структур. Крупнейшие металлургические базы России. Металлургический комплекс включает черную и цветную металлургию, то есть совокупность связанных между собой отраслей и стадий производственного процесса от добычи сырья до выпуска готовой продукции - чёрных и цветных металлов и их сплавов. К чёрным металлам относят железо, марганец, хром. Все остальные - цветные.

Черная металлургия. Черная металлургия охватывает весь процесс от добычи и подготовки сырья, топлива, вспомогательных материалов до выпуска проката с изделиями дальнейшего передела. Значение черной металлургии заключается в том, что она служит основой развития машиностроения (одна треть производимого метелла идет в машиностроение), строительство (1/4 металла идет в строительство). Кроме того продукция черной металлургии имеет экспортное значение.

В состав черной металлургии входят следующие основные подотрасли:

  • * добыча и обогащение рудного сырья для черной металлургии (железных, марганцевых и хромитовых руд);
  • * добыча и обогащение нерудного сырья для черной металлургии (флюсовых известняков, огнеупорных глин и т.п.);
  • * производство черных металлов (чугуна, стали, проката, доменных ферросплавов, металлических порошков черных металлов);
  • * производство стальных и чугунных труб;
  • * коксохимическая промышленность (производство кокса, коксового газа и пр.);
  • * вторичная обработка черных металлов (разделка лома и отходов черных металлов).

В размещении черной металлургии полного цикла большую роль играет сырье и топливо, особенно велика роль сочетаний железных руд и коксующихся углей. Особенностью размещения отраслей является их территориальное несовпадение, так как запасы железной руды сосредоточенны, в основном, в европейской части, а топлива - преимущественно в восточных районах России. Комбинаты создают у сырьевых (Урал) или топливных баз (Кузбасс), а иногда между ними (Череповец). При размещении учитывают также обеспечение водой, электроэнергией, природным газом.

В России созданы три металлургические базы: Уральская, Центральная и Сибирская.

  • * Уральская металлургическая база использует собственную железную руду (главным образом Качканарских месторождений), а также привозную руду Курской магнитной аномалии и отчасти - руду Кустанайских месторождений Казахстана. Уголь привозится из Кузнецкого бассейна и Карагандинского (Казахстан). Крупнейшие заводы полного цикла находятся в городах Магнитогорск, Челябинск, Нижний Тагил и др.
  • * Центральная металлургическая база использует железные руди Курской магнитной аномалии, Кольского полуострова и металлолом Центральной России, а также привозной коксующийся уголь из Печорского и Кузнецкого бассейнов, а отчасти - Донбасса (Украина). Крупные заводы полного цикла представлены в городах Череповец, Липецк, Тула, Старый Оскол и др.
  • * Сибирская металлургическая база использует железные руды Горной Шории, Абаканского, Ангаро-Илимских месторождений и коксующегося угля Кузбасса. Заводы полного цикла представлены Кузнецким металлургическим комбинатом и Западно-Сибирским металлургическим заводом, расположенным в городе Новокузнецке.

Цветная металлургия. Цветная металлургия включает добычу, обогащение руд цветных металлов и выплавку цветных металлов и их сплавов. Россия обладает мощной цветной металлургией, отличительная черта которой - развитие на основе собственных ресурсов. По физическим свойствам и назначению цветные металлы условно можно разделить на тяжелые (медь, свинец, цинк, олово, никель) и легкие (алюминий, титан, магний). На основании этого деления различают металлургию легких металлов и металлургию тяжелых металлов.

На территории России сформировано несколько основных баз цветной металлургии. Различия их в специализации объясняются несхожестью географии легких металлов (алюминиевая, титано-магниевая промышленность) и тяжелых металлов (медная, свинцово-цинковая, оловянная, никель-кобальтовая промышленности). Размещение предприятий цветной металлургии зависит от многих экономических и природных условий, особенно от сырьевого фактора. Заметную роль, помимо сырья, играет топливно-энергетический фактор.

Производство тяжелых цветных металлов в связи с небольшой потребностью в энергии приурочено к районам добычи сырья по запасам, добыче и обогащению медных руд, а также по выплавке меди ведущее место в России занимает Уральский экономический район, на территории которого выделяются Красноуральский, Кировоградский, Среднеуральский, Медногорский комбинаты.

Свинцово-цинковая промышленность в целом тяготеет к районам распространения полиметаллических руд. К таким месторождениям относяться Садонское (Северных Кавказ), Салаирское (Западная Сибирь), Нерченское (Востэнергии (Усть-Каменогорскийтитано-магниевый завод). Заключительная стадия титано-магниевой металлургии - обработка металлов и их сплавов - чаще всего размещается в районах потребления готовой продукции.

Проблемы и перспективы цветной металлургии: 1.проблемы: Истощение месторождений медных, аллюминевых руд. Отсутствие крупных месторождений марганцевых, хромитовых, титановых и других руд. Производство черных металлов в России, начиная с 1990 г., сократилось на 50% Низкое качество чугуна и стали (из-за того, что большая часть заводов работает на старом оборудовании и старых технологиях). Дороговизна российского металла (цены выше мировых на 20%-40%). Одна из причин этого – монополия заводов-гигантов. Экологическая проблема (металлургия – грязная отрасль). 2. перспективы: Развитие дальневосточной металлургической базы (например, проекта завода Нерюнгри) Применение новых технологий добычи руды, позволяющих меньше загрязнять окружающую среду. Разработаны гео- и биотехнологии добычи руды, которые позволяют сохранять ландшафты. Одно из перспективных направлений в металлургии (особенно в черной металлургии) - это создание автоматизированных мини- заводов, которые работают на металлоломе, меньше загрязняют окружающую среду. Использование вторсырья (металлолом), переплавка которого эффективна. Так, при плавке 1 т металлолома экономится 4 т железной руды, 530т медной руды. Загрязнения атмосферы сокращаются в 7 раз, количество отходов снизится в 16 раз.

Слайд 13 из презентации «Металлургический комплекс» . Размер архива с презентацией 252 КБ.

География 9 класс

краткое содержание других презентаций

«Характеристика Урала» - Отрасли промышленности. Лесная промышленность. Население. Состав населения. Физико-географическое положение. Уральский экономический район. Водные ресурсы. Химическая промышленность. Металлургия. Экономико-географическое положение. Природные ресурсы района. Положение района. Урал. Машиностроение.

«Электроэнергетика России» - Геотермальные электростанции. Атомные электростанции. Теплоэлектростанции. Почему человечество ищет нетрадиционные источники энергии. Гидроэлектростанции. Факторы размещения. Топливно-энергетический комплекс. Значение, роль и состав электроэнергетики России. Тип ЭС. Электроэнергетика. Мутновская ГеоЭС. Дайте характеристику ТЭС, ГЭС и АЭС. Приливные электростанции. Информацию оформить в виде таблицы.

«Софийский собор в Киеве» - Софийский собор в Киеве. София Киевская стала главным храмом страны. София неоднократно горела, перестраивалась. Мозаики первоначально занимали огромную площадь. Собор Святой Софии (Софийский собор) - храм, построенный в XI веке. Мозаики и фрески Софийского собора были созданы в середине XI века. Мозаика Богоматерь Оранта. Софиевский собор был заложен в 1037 году князем Ярославом Мудрым. Мозаики главного алтаря и главного купола - шедевр искусства.

«История Санкт-Петербурга» - Толщина ледяного панциря достигала более 1 км. Эпоха великого оледенения длилась несколько десятков тысяч лет. Наибольшие проблемы в Петербурге возникали из-за наводнений. Около Ниена начиналась Выборгская дорога - единственная сухопутная связь с метрополией. 1917 год был началом революции. Название было выбрано Петром I в честь святого апостола Петра. Дату заложения крепости принято считать официальной датой рождения города.

«Хозяйство Центрального района России» - Географические и экономические районы России. Способ посадки за компьютером. Состав продукции машиностроения. Дать характеристику хозяйства. Компьютер. Хозяйство Центрального района. Неполадки в работе компьютера. Индустриальная модель экономики. Работа за компьютером. Не прикасайтесь к экрану монитора. Работа по индивидуальным карточкам. Состав предоставляемых услуг в Центральном районе. Будьте внимательны.

«Достопримечательности Санкт-Петербурга» - Памятник А.С. Пушкину. Одна из самых популярных достопримечательностей Петербурга. Египетский мост. Один из самых известных в мире музей России. Второй арктический ледокол, построенный в нашей стране. В 1991 г. возобновлены богослужения, в 2000 г. собор получил статус кафедрального. Михаиловский (Инженерный) замок. Считается старейшим каменным мостом Питера. Музей "Эрмитаж". С колоннады собора открывается замечательный вид на город.

Введение……………………………………………………………………..…3с. 1.Экологические проблемы цветной металлургии……………………….....5с. 2. Применение комбинированных технологий для экологизации металлургических производств……………………………………………………..…….....7с. 3. Практическое значение экологизации………………………………….….11с. 4. Система оборотного водоснабжения…………………………………...….14с.

Заключение……………………………………………………………………..16с. Список используемой литературы……………………………………………17с.

Введение

В наше время, цветная металлургия относится к числу отраслей с наибольшим выходом промышленных отходов на единицу продукции. При проектировании значительной части действующих предприятий не учитывались требования рационального природопользования и снижения негативного влияния производственной деятельности на среду обитания. Создание экологически безопасных производств, основанных на использовании современных безотходных технологий, связано с огромными капитальными затратами. Выходом из сложившейся ситуации является экологизация существующего промышленного производства путем проведения комплекса мероприятий, включающих совершенствование технологических процессов, повышение эффективности очистки сточных вод и утилизации твердых отходов, внедрение современных автоматизированных средств экомониторинга. В основе всех мероприятий по предотвращению загрязнения окружающей среды лежит контроль, обеспечивающий получение достоверной информации, необходимой для управления природоохранной деятельностью. Использующиеся для экомониторинга физико-химические методы должны отвечать критериям, предъявляемым в данной области анализа: высокая чувствительность, селективность, воспроизводимость, экспрессность, простота пробоподготовки, возможность широкой автоматизации, приемлемая стоимость и т.д. К числу наиболее актуальных и мало разработанных проблем экоаналитики относится приборное и методическое обеспечение контроля техногенных загрязнителей водного и воздушного бассейна. Перспективным направлением повышения эффективности очистки сточных вод является сочетание традиционных реагентных методов с сорбционными технологиями, обеспечивающими снижение концентрации загрязняющих веществ до уровня ПДК. Задача создания малозатратной глубокой очистки промстоков от экотоксикантов является очень сложной и ее решение во многом зависит от правильного выбора сорбента и создания необходимых условий для его эффективного и многократного использования. Применение комбинированных технологий для утилизации многотоннажных токсичных отходов обеспечивает создание производств, отвечающих принципам комплексного использования сырья и экологической безопасности. Разработка комбинированных технологий требует проведения специальных исследований по выбору оптимальных режимных параметров всех использующихся методов переработки отходов, включая производство изделий строительной индустрии. Экологизация флотационных методов обогащения руд направлена на сокращение расхода токсичных реагентов, уменьшение содержания тяжелых металлов в хвостах, снижение водопотребления. Научную и производственную проблему представляет разработка высокоэффективных способов оптимизации автоматического управления флотацией по алгоритмам, полученным при изучении взаимосвязей между параметрами ионного состава и технологическими показателями процесса. Поточное по своей сути гидрометаллургическое производство легко поддается автоматизации на основе контроля параметров ионного состава. Наиболее сложным и во многом не решенным является вопрос создания высокоизбирательных автоматических анализаторов микропримесей в процессе очистки растворов кислого и нейтрального выщелачивания. Сложную и неизученную область в химической экологии представляет моделирование химических трансформаций техногенных загрязнителей в условиях реакционноспособной среды и экомониторинг продуктов химических превращений, связанных с комплексообразованием органических и неорганических веществ лигандной природы с ионами металлов, а также очистка сточных вод цветной металлургии от образующихся координационных соединений. Сочетание современных физико-химических методов с квантово-химическими расчетами позволяет решить перечисленные выше задачи.

1. Экологические проблемы цветной металлургии

Цветная металлургия относится к числу отраслей с наибольшим выходом промышленных отходов на единицу продукции. При проектировании и строительстве значительной части ныне действующих предприятий цветной металлургии не учитывались требования рационального природопользования и снижения негативного воздействия производственной деятельности на среду обитания. В условиях формирования рыночных отношений возможности экологизации промышленного производства существенно сократились. При этом, несмотря на значительное уменьшение объема выпускаемой продукции, ущерб, наносимый предприятиями горно-металлургического комплекса среде обитания, ощутимо возрос.

Основными источниками загрязнения воды, используемой для производства цветных металлов, являются газоочистные сооружения, где при очистке газов образуются высокоминерализованные стоки, а также основные технологические переделы, использующие воду для размыва образующихся отходов и промпродуктов, которые в настоящее время не могут быть утилизированы или вывезены на отвальное поле для захоронения. Другими источниками загрязнения воды являются вспомогательные производства (масло, нефтепродукты) и участки по ремонту и профилактике основного технологического оборудования. Основными методами очистки сточных вод, образующихся на предприятиях первичной цветной металлургии, являются: механическая очистка от взвешенных веществ, деструктивные методы очистки от тяжелых металлов и радиоактивных элементов, термическое разложение гипохлоритных растворов, нейтрализация кислых стоков известковым молоком, а также биологическая и химическая очистка хозбытовых стоков. Анализируя состояние работы природоохранных объектов по обезвреживанию сточных вод подотрасли, необходимо отметить, что функционирующие очистные сооружения и применяемые методы очистки не обеспечивают достаточно эффективную степень очистки нормативно очищенных сточных вод. К настоящему времени в зоне действия рудников, обогатительных фабрик и металлургических заводов отрасли накоплено 5 млрд. т. вскрышных и вмещающих пород, около 1 млрд. т. хвостов обогащения и почти 500 млн.т. металлургических шлаков и шламов. Миллионы тонн вредных веществ выбрасываются в атмосферу и сотни миллионов кубометров сточных вод - в водный бассейн. Ежегодно образуется более 300 млн. т. твердых отходов, а используется не более 20%. Вовлекаются в производство лишь не более 20% вскрышных пород, около 10% отходов обогащения и примерно 40% шлаков. В отвальных хвостах обогащения содержится более 1 млн.т. меди, 1,2 млн.т. цинка, более 700 тыс. т. никеля и 35 тыс. т. кобальта, около 400 тыс. т. молибдена. В отвалах шлаков металлургического производства содержится 1 млн. т. меди и цинка, 400 тыс. т. никеля, 13 тыс. т. олова, 84 тыс. т. свинца. Особо губительное воздействие на окружающую среду предприятий горно-металлургического комплекса наблюдается в горных регионах России и, в частности, в Республике Северная Осетия-Алания (РСО-А), промышленный потенциал которой в значительной степени связан с добычей и переработкой руд цветных металлов. В республике накоплено 3,5 млн. т. промышленных отходов 1 -4 классов опасности, из которых 184 тыс. т. особенно опасных отходов заводов «Электроцинк« и «Победит«. Отходы размещаются на территории предприятий, загрязняя природную среду соединениями ртути, свинца, хрома, фтора. В г. Владикавказе выделяется ареал рассеяния тяжелых металлов площадью 40 км2, в пределах которого содержание металлов в десять раз превышает концентрации в городской черте. Источниками загрязнения почв являются хвостохранилища обогатительных фабрик, питающие регион растворами токсичных ингредиентов, основные из которых цинк и свинец. ПДК превышается: по цинку - в 400 раз, по меди - в 40 раз, по свинцу - в 15 раз, по нитратам - в 250 раз. Один только «Электроцинк« в течение года выбрасывает в атмосферу 560 т взвешенных веществ, 14 т свинца, около 100 т цинка и его соединений, 70 т серной кислоты и 7500 т других веществ. Количество жидких отходов составляет около 1600 т в год. В них содержится: цинка 0,14 т, кобальта 0,24 т, марганца 2 т, железа 0,1 т, меди 0,07 т, молибдена 0,05 т, вольфрама 0,13 т. Содержание ингредиентов превышает ПДК на 2-3 порядка, достигая по некоторым из них сотен. Для снижения негативного влияния производственной деятельности на природную среду необходим комплексный подход, включающий мероприятия, направленные как на усовершенствование основных технологических процессов, так и на обезвреживание и утилизацию текущих и ранее накопленных жидких, твердых и газообразных отходов.

2. Применение комбинированных технологий для экологизации металлургических производств

Целью разработки комбинированных технологий является создание комплекса процессов направленных на экологизацию способов переработки руд цветных металлов, очистки сточных вод, утилизации отходов, создание новых способов и средств контроля загрязнений окружающей среды на базе экспериментальных и теоретических исследований с использованием физико-химических методов, математической статистики и квантовохимических расчетов. Применение комбинированных технологий для утилизации многотоннажных токсичных отходов обеспечивает создание производств, отвечающих принципам комплексного использования сырья и экологической безопасности. Разработка комбинированных технологий требует проведения специальных исследований по выбору оптимальных режимных параметров всех использующихся методов переработки отходов, включая производство изделий строительной индустрии. Экологизация флотационных методов обогащения руд направлена на сокращение расхода токсичных реагентов, уменьшение содержания тяжелых металлов в хвостах, снижение водопотребления. Научную и производственную проблему представляет разработка высокоэффективных способов оптимизации автоматического управления флотацией по алгоритмам, полученным при изучении взаимосвязей между параметрами ионного состава и технологическими показателями процесса. Поточное по своей сути гидрометаллургическое производство легко поддается автоматизации на основе контроля параметров ионного состава. Наиболее сложным и во многом не решенным является вопрос создания высокоизбирательных автоматических анализаторов микропримесей в процессе очистки растворов кислого и нейтрального выщелачивания. Сложную и неизученную область в химической экологии представляет моделирование химических трансформаций техногенных загрязнителей в условиях реакционноспособной среды и экомониторинг продуктов химических превращений, связанных с комплексообразованием органических и неорганических веществ лигандной природы с ионами металлов, а также очистка сточных вод цветной металлургии от образующихся координационных соединений. Сочетание современных физико-химических методов с квантово-химическими расчетами позволяет решить перечисленные выше задачи. Идея заключается в повышении экологической безопасности производства цветных металлов за счет комплексного подхода, включающего разработку новых методов и средств оперативного экомониторинга техногенных загрязнителей окружающей среды, создание высоких технологий обезвреживания жидких и твердых отходов, автоматизацию контроля и управления флотационными и гидрометаллургическими процессами. Для достижения данной цели поставлены следующие конкретные задачи: 1. Экологизация процессов обогащения полиметаллических руд на основе изучения взаимосвязей между ионным составом жидкой фазы пульпы и основными показателями флотации с использованием экспериментально-статистических методов исследований и автоматического регулирования расхода реагентов по параметрам ионного состава. 2. Повышение экологической безопасности и эффективности цинкового производства путем разработки методов и систем автоматического контроля ионов тяжелых цветных и редких металлов в технологических растворах. 3. Разработка методов и средств оперативного физико-химического экомониторинга техногенных загрязнителей окружающей среды и автоматических анализаторов гидрометаллургических растворов и флотационныхпулп. 4. Разработка методик экспресс-анализа пылегазовых выбросов свинцово-цинковой и вольфрамо-молибденовой отрасли.

5. Разработка экологически безопасной технологии очистки промышленных сточных вод от техногенных загрязнителей неорганической и органической природы и продуктов их химических превращений с помощью полимерных фильтрующих материалов ВИОН. 6. Разработка комбинированной флотационно-гидрометаллургической технологии переработки отвальных шламов молибденового производства с извлечением ценных.компонентов и утилизацией обезвреженных отходов в строительные материалы. 7. Моделирование химических превращений (комплексообразования и реакций с переносом электрона) техногенных загрязнителей гетероциклической природы в присутствии ионов металлов и других электроноакцепторных веществ на основе электрохимических, спектральных исследований и квантово-химических расчетов. 8. Обоснование механизма реакций в сточных водах цветной металлургии с участием донорных и акцепторных субстратов, ионов тяжелых цветных металлов и других реакционно-способных веществ по типу гомогенного катализа. 9. Внедрение разработанных методов и средств контроля, технологий очистки сточных вод и переработки отходов в производственную практику предприятий цветной металлургии. При использовании данной технологии применимы физико-химические методы исследований: классическая, переменнотоковая, нормальная (НИП) и дифференциальная импульсная полярография (ДИП) в прямом и инверсионном режимах, циклическая вольтамперометрия (ЦВА), ионометрия, электронная спектроскопия, экспериментально-статистические методы исследований технологических процессов, квантово-химические методы расчетов молекул техногенных загрязнителей лигандной природы и продуктов их взаимодействия с ионами металлов. В систему производства внедряются: - вновь разработанные высокоизбирательные методики автоматического оперативного контроля промышленных сточных вод, пылегазовых выбросов, флотационных пульп и гидрометаллургических растворов; - высокие безотходные технологии очистки промышленных сточных вод и переработки отвальных шламов, предусматривающие извлечение ценных компонентов и утилизацию обезвреженных продуктов; - системы автоматического управления процессами селекции полиметаллических руд, разработанные на основе экспериментально-статистических методов исследований технологических процессов и обеспечивающие повышение экологической безопасности пенной флотации; - вновь разработанные автоматические электрохимические анализаторы промышленных сточных вод и технологических растворов; - теоретическое положения о роли солей тяжелых металлов в химических превращениях техногенных загрязнителей как катализаторов переноса электрона с субстрата лигандной природы на электроноакцепторный реагент. Впервые разработаны легко поддающиеся автоматизации методики избирательного вольтамперометрического контроля промышленных сточных вод и флотационных пульп на содержание минеральных частиц (а.с. №505941), бутилового ксантогената, олеата натрия, сульфид-ионов, меди и цинка в присутствии цианидов (а.с.№ 1070462, №1422123), разновалентных форм мышьяка (пат.РФ №2102736); методики оперативного вольтамперометрического контроля индия, никеля (а.с. №1777065), сурьмы, кобальта (пат. РФ №2216014), перманганат-ионов (пат. РФ №2186379) в растворах сульфата цинка. Используется возможность использования концентраций ионов меди и цинка в жидкой фазе флотационной пульпы в качестве режимных параметров в системах регулирования процессов медно-свинцовой и свинцово-цинковой селекции коллективных концентратов (а.с. №1257910 и №1367244). Создан специализированный комплекс средств пробоотбора и пробоподготовки для автоматических анализаторов ионного состава промышленных сточных вод, пульп и гидрометаллургических растворов (а. с. №1224650, №1265519, №1428981, пат. РФ №2037146). Разработаны экологически безопасные технологии глубокой очистки промстоков цветной металлургии от флотореагентов, ионов тяжелых и редких металлов, координационных соединений с помощью полимерных волокнистых сорбентов и флотационно-гидрометаллургическая технология переработки твердых отходов молибденового производства. Впервые на основе электрохимических, спектроскопических исследований, квантовохимических расчетов обоснован гомогенный катализ в химических трансформациях техногенных загрязнителей лигандной природы в присутствии ионов тяжелых цветных металлов окислителей и других реакционно-способных веществ. Достоверность научных положений, выводов и рекомендаций подтверждается комплексным использованием физико-химических, экспериментально-статистических и квантовохимических исследований; высокой сходимостью экспериментальных данных с теоретическими расчетами, результатами лабораторных и промышленных испытаний, высокой эксплуатационной надежностью разработанных методов и средств контроля и управления процессами переработки минерального сырья и очистки сточных вод. Научное значение работ производимых по данной технологии состоит в разработке теоретических основ и методической базы оперативного контроля техногенных загрязнителей окружающей среды, в теоретическом и экспериментальном обосновании методов глубокой сорбционной очистки промстоков от экотоксикантов, в создании эффективных способов управления процессами флотации полиметаллических руд, в прогнозировании химических трансформаций техногенных загрязнителей в промстоках. Научные результаты выполненного исследования могут найти применение в природоохранной деятельности при переработке минерального сырья.

3.Практическое значение экологизации

Основным технологическим процессом переработки руд цветных металлов является пенная флотация. Экологизация флотационных методов обогащения тесно связана с оптимизацией реагентного режима, позволяющей достичь существенного сокращения расхода токсичных реагентов, снижения содержания тяжелых металлов, уменьшения водопотребления и т.д. Важнейшим направлением работ по совершенствованию процессов пенной флотации является управление расходом реагентов по параметрам ионного состава жидкой фазы пульпы. В настоящее время теоретически и экспериментально доказано, что концентрация реагентов в пульпе является наиболее обобщенным (интегральным) показателем состояния флотационного процесса, позволяющим учитывать большинство факторов, влияющих на конечные результаты обогащения рудного сырья. Проведение работ по интенсификации флотационных процессов на основе регулирования реагентным режимом по параметрам ионного состава стало возможным благодаря инструменталлизации и автоматизации контроля отдельных ионных компонентов в сложных по составу водных растворах. Только наличие основанного на современных физико-химических методах анализа приборного парка создает необходимую базу для исследований, направленных на выявление оптимальных диапазонов концентраций реагентов в пульпе и изучения взаимосвязи между параметрами ионного состава и технологическими показателями флотации. Промышленное исследование флотационных процессов на основе активно-пассивных планируемых экспериментов, статистической обработки результатов и математического моделирования позволяет разработать высокоэффективные способы оптимизации режимов управления флотацией руд переменного вещественного состава. Важнейшим экологическим результатом таких работ является резкое сокращение расхода высокотоксичных флотореагентов (ксантогенатов, цианидов, солей тяжелых металлов и т. д.) и снижение до минимума их сброса в водный бассейн.

К числу наиболее прогрессивных и универсальных методов переработки относится гидрометаллургия, значение которой особенно возросло в связи с вовлечением в производство больших объемов техногенного сырья. Универсальность, гибкость, простота аппаратурного оформления, высокая технико-экономическая эффективность гидрометаллургических технологий открывает значительные перспективы их применения для решения задач комплексной переработки разнообразного минерального сырья с минимальным вредным воздействием на окружающую среду. Гидрометаллургические методы легко поддаются автоматизации на основе контроля параметров ионного состава. В частности, успешное проведение процессов кислого и нейтрального выщелачивания перед электролитическим осаждением многих металлов стало возможным благодаря автоматизированному контролю технологических растворов на содержание основных ионных компонентов и микропримесей. Радикальное решение проблем охраны среды от негативного воздействия промышленных объектов возможно при широком применении безотходных и малоотходных технологий. К сожалению, прогнозы развития мировой цветной металлургии не дают оснований надеяться, что в ближайшее время будут найдены принципиально новые методы устранения большого количества отходов. Это вызывает необходимость снижения до минимума вреда, наносимого природной среде жидкими, твердыми и газообразными отходами путем разработки экологически безопасных, высокоэффективных технологий их обезвреживания и утилизации. Основная часть жидких отходов предприятий цветной металлургии представлена различного рода водными растворами (рудничные воды, промышленные сточные воды, условно чистые воды, хозбытовые воды). Наибольший урон окружающей среде наносится при сбросе в открытые водоемы промышленных сточных вод металлургических заводов и рудообогатительных фабрик. Сточные воды предприятий цветной металлургии имеют сложный химический состав и высокую степень загрязнения высокотоксичными веществами, что определяется как разнообразием перерабатываемого сырья, так и многостадийностью производственных процессов и широким ассортиментом применяемых реактивов и материалов. Использующиеся на подавляющем большинстве предприятий отрасли методы реагентной химической очистки промстоков не обеспечивают необходимой степени извлечения многих токсичных компонентов, что приводит к сверхнормативному сбросу токсичных веществ в водный бассейн, а также препятствует внедрению замкнутых схем водооборота. Большой выход сильно загрязненных сточных вод делает технически и экономически нецелесообразным применение для их очистки многих современных физико-химических методов, позволяющих достичь высокой степени извлечения техногенных загрязнителей. Вместе с тем, как показывает опыт, привлечение таких прогрессивных методов, как сорбция и ионный обмен для доизвлечения вредных веществ из прошедших реагентную очистку промстоков может оказаться весьма эффективным. Возможности этого направления работ значительно расширились после появления новых высокоэффективных волокнистых хемосорбентов, обладающих развитой поверхностью, хорошими кинетическими характеристиками, термостойкостью и химической устойчивостью. Наибольший практический интерес для очистки производственных сточных вод представляют отечественные промышленно освоенные нетканые материалы ВИОН, изготовленные на основе модифицированных полиакрилонитрильных (ПАН) волокон. К настоящему времени накоплен определенный опыт работ по использованию ПАН сорбентов ВИОН для очистки промстоков и технологических растворов от загрязняющих веществ различной природы. На основе катионо- и анионо- обменных фильтров ВИОН созданы локальные системы и устройства очистки цеховых сточных вод, бытовые фильтры для очистки питьевой воды и т.д. Практическое значение: 1. Применение разработанных способов и средств контроля сточных и условно чистых вод позволяет повысить эффективность работы очистных сооружений и снизить сброс токсичных веществ в открытые водоемы. 2. Использование вольтамперометрических экспресс анализаторов атмосферного воздуха обеспечивает своевременное обнаружение источников сверхнормативных и несанкционированных выбросов токсичных веществ в воздушный бассейн. 3. Технология очистки промстоков с применением ПАН фильтров позволяет снизить содержание загрязняющих веществ до уровня ПДК, сконцентрировать и извлечь ценные компоненты, исключить образование высокотоксичных неутилизируемых шламов. 4. Экологически безопасная флотационно-гидрометаллургическая технология переработки отвальных шламов обеспечивает снижение безвозвратных потерь молибдена и утилизацию обезвреженных отходов в изделия строительной индустрии. 5. Автоматический контроль и управление флотационными и гидрометаллургическими процессами по параметрам ионного состава приводит к увеличению объема производства цветных металлов при одновременном снижении сброса токсичных веществ в открытые водоемы. Теоретические и методические разработки использованы в практике научно-исследовательской работы СКФ ОНТК «Союз ЦМА», а также в учебном процессе СОГУ. Созданные методики контроля и анализаторы техногенных загрязнителей окружающей среды, системы контроля и управления технологическими процессами очистки сточных вод и гидрометаллургических растворов, флотационного обогащения руд внедрены на заводах «Электроцинк», «Мосэлектрофольга», «Рязцветмет», на обогатительных фабриках и металлургических заводах Алмалыкского, Джезказганского, Лениногорского, Зыряновского, Садонского комбинатов. Технологии сорбционной очистки сточных вод и переработки отвальных шламов успешно испытаны и приняты к внедрению заводом «Победит».

4.Система оборотного водоснабжения