12-09-2014, 19:18

Описание

Метод определения рефракции при помощи скиаскопии предложен в 1873 г. Кинье (Cuignct). Данный способ, благодаря своей доступности, точности и полной объективности, получил настолько широкое распространение, что в настоящее время скиаскопия является основным методом определения рефракции.

Основывается скиаскопия на следующем оптическом явлении: если зрачок осветить с помощью глазного зеркала так, как это делается при офталмоскопическом просвечивании сред, то он будет казаться равномерно красным; если же исследующий, продолжая наблюдение, начнет слегка вращать зеркало вокруг осп справа налево н наоборот, то яркость освещения зрачка будет меняться, как бы под влиянием пробегающей по дну глаза тени.

Изучение этого явления на большом количестве глаз показало, что направление движения тени подчинено определенной закономерности и зависит от трех условий:

  1. рефракции исследуемого глаза;
  2. свойств зеркала (плоское или вогнутое);
  3. расстояния между исследующим и исследуемым глазом.
В зависимости от сочетания указанных условий, тень перемещается или в сторону движения зеркала, или в противоположном направлении, или движения тени не отмечается.

В общем, все разнообразие получающихся результатов сводится к нескольким положениям, для обоснования которых необходимо хотя бы в элементарной форме коснуться теоретической стороны данного вопроса.

ТЕОРИЯ СКИАСКОПИИ


Скиаскопия с помощью плоского зеркала. Предположим, что исследование плоским зеркалом производится с определенного расстояния, например, в один метр от исследуемого глаза. Лучи, исходящие от источника света К, отражаются плоским зеркалом ИЕ (рис. 20) и, пройдя через круглый зрачок исследуемого глаза А, освещают часть его глазного дна в виде небольшого кружка п. При повороте зеркала, например, так, чтобы оно заняло изображенное пунктиром положение N1E1, отражаемые от пего лучи отклонятся книзу и, вследствие этого, освещенный участок глазного дна переместится из а в в1.


Понятно, что при этом па фоне красного зрачка появится вверху серповидная тень, также смещающаяся книзу, в связи с тем, что освещенный участок будет уступать место двигающейся вслед за ним тени. Таково действительное перемещение освещенного участка и тени в исследуемом глазу, остающееся постоянным при всех видах его рефракции.

У наблюдателя же создается кажущееся впечатление о перемещении освещенного участка и тени, меняющееся в зависимости от рефракции исследуемого глаза. Рассмотрим все могущие при этом быть варианты.

  1. Исследуемый глаз - миоп более 1,0 D (рис. 21). В этом случае лучи, исходящие из освещенного участка в, собираются в сопряженном фокусе а (punctum remotum), где-то впереди плоского зеркала NE. Если освещенный участок переместится в в1, то исходящие из пего лучи соберутся в фокусе а1, и после пересечения пойдут дальше в виде расходящегося пучка оа1с.


    Часть этого пучка oа1к (заштрихована) встретит па своем пути препятствие - стенку офталмоскопа ок (или радужку) и, поэтому, в глаз наблюдателя не попадет. Пучок лучей оа1к является продолжением пучка nа1м (тоже заштрихован), следовательно, в глаз наблюдателя не попадут лучи, исходящие из нижней части зрачка исследуемого глаза, вследствие чего эта часть его будет казаться затемненной.
    По мере дальнейшего перемещения освещенного участка в1 книзу, пучок лучей оа1с будет перемещаться кверху и препятствие на своем пути встретит уже значительно большая часть лучей верхнего отдела этого пучка. При этом сторона ок треугольника оа1к увеличится, соответственно увеличится и сторона пм треугольника на1м, а это значит, что затемнение нижнего отдела зрачка станет выше и у наблюдателя создается впечатление, что тень перемещается снизу вверх.
    Быстрота движения тени зависит от степени миопии. Предположим, что степень миопии у исследуемого выше, чем в разобранном случае, тогда дальнейшая точка а1 будет находиться ближе к исследуемому глазу, и сторона на1 треугольника на1м окажется меньше стороны ка1 треугольника оа1к.
    Из подобия указанных треугольников следует, что при этом нм также будет меньше ок, т. е. высота тени уменьшится относительно величины смещения пучка света. Следовательно, при одной и той же быстроте смещения пучка лучей кверху (быстроте вращения зеркала) увеличение надвигающейся на зрачок тени будет происходить при высокой степени миопии относительно медленнее, чем при слабой миопии, что и создаст впечатление более медленного движения тени. Таким образом, при миопии больше 1,0 D, тень перемещается в сторону, противоположную движению зеркала, быстрота движения тени уменьшается с увеличением степени миопии.
  2. Исследуемый глаз - гиперметроп, эмметроп или мион слабее 1,0 D. При гинерметропии выходящие из глаза лучи имеют расходящееся направление. Для того, чтобы узнать, какую степень дивергенции лучи имеют в пространстве, необходимо представить себе, что они исходят из дальнейшей точки ясного зрения, которая ври гиперметропии находится позади глаза. Предположим, что а является дальнейшей точкой, соответствующей освещенному участку в (рис. 22), тогда исходящий из этой точки лучок лучей будет ограничен линиями ак и ас. Пели освещенный участок в переместится в то дальнейшая точка а сместится в Исходящие из «| лучи ОТКЛОНЯТСЯ кверху И будут ограничены ЛИНИЯМИ


    При этом в глаз наблюдателя не попадут лучи, ограниченные линиями ом и кн (заштрихованный участок), так как они встретят на своем пути препятствие ок (стенку офталмоскопа или радужку). Лучи, не попавшие в глаз наблюдателя, исходят из верхней части зрачка; очевидно, что теперь у исследующего создастся впечатление, что в этой части зрачка появилась тень; высоту тени указывает отрезок пт. Если пучок лучей сместится дальше кверху, то ок, а также нм, соответственно увеличатся, т. е. тень в верхней части зрачка станет выше и у наблюдателя появится впечатление, что она движется книзу.
    Быстрота движения тени зависит от степени гиперметропии. Это нетрудно доказать. Треугольники оа1к и ма1н подобные, поэтому
    а1н/а1к=мн/ок
    По мере увеличения степени гиперметропии a1н будет уменьшаться, в результате чего будет уменьшаться как отношение а1н/а1к, так и отношение мн/ок, т. е. высота тени бyдет становиться меньше относительно величины смещения пучка лучей. Следовательно, при одной и той же быстроте смещения пучка лучей кверху, с увеличением степени гиперметропии затемнение зрачка будет происходить медленнее, что и создаст впечатление более медленного движения тени.


    При эмметропии лучи, исходящие из освещенного участка в, по выходе из глаза примут параллельное направление и будут ограничены двумя параллельными линиями мк и ас (рис. 23). Если освещенный участок на дне исследуемого глаза переместится в в в1 , то пучок лучей отклонится кверху и будет ограничен линиями мо и ар. При этом лучи ограниченные линиями мо и нк встретят на своем пути препятствие ок (стенку офталмоскопа пли радужку) и в глаз исследующего не попадут; вследствие этого, верхняя часть зрачка, откуда исходят эти лучи, будет казаться затемненной (пучок лучей, не попадающих в глаз наблюдателя).

    Чем больше освещенный участок в1 сместится книзу, тем значительнее пучок параллельных лучей отклонится кверху. Очевидно, что при этом в глаз наблюдателя уже не сможет попасть большая часть верхнего отдела смещенного пучка; отрезок ок, указывающий какая часть лучей встретила на своем пути препятствие, а также соответствующий ему отрезок мн (высота тени) увеличатся и наблюдателю будет казаться, что тень перемешается сверху вниз.
    Здесь отрезки ок и мн будут всегда равны друг другу, так как они являются противоположными сторонами параллелограмма омнк. При гиперметропии же отрезок мн всегда меньше отрезка ок, поэтому, при одной и той же быстроте смещения пучка лучей, движение тени при эмметропии будет быстрее, чем при гиперметропии.

    При миопии слабее 1,0 D лучи, исходящие из освещенного участка в, соберутся позади глаза исследующего в дальнейшей точке а (рис. 24). Если освещенный участок переместится из в в в1 то дальнейшая точка передвинется из а в а1. При этом в глаз наблюдателя не сможет попасть пучок лучен, ограниченный линиями то и нк (заштрихован).


    Следовательно, и в этом случае у наблюдателя получится впечатление о появлении в верхней части зрачка тени, которая, при дальнейшем смещении пучка лучей кверху, будет двигаться книзу. В этом случае мн будет всегда больше ок, поэтому, при одной и той же скорости смешения пучка лучей кверху тень будет двигаться быстрее, чем при эмметропии.

    Таким образом, при гиперметропии, эмметропии, а также миопии слабее 1,0 D, тень перемещается в сторону движения зеркала. При одной и той же скорости вращения зеркала тень наиболее быстро двигается при миопии слабее 1,0 D, медленнее при эмметропии и еще медленнее при гиперметропии. С увеличением степени гиперметропии быстрота движения тени уменьшается.

  3. Исследуемый глаз миоп в 1,0 D. В этом случае дальнейшая точка ясного зрения удалена от исследуемого глаза на расстояние 1 метра. Следовательно, лучи, исходящие из освещенного участка в, соберутся в сопряженном фокусе а, который совпадает с плоскостью зеркала NЕ (рис. 25). Очевидно, что при этом условии не может быть такого положения, чтобы глаз наблюдателя попадала только часть лучей, исходящих из глаза исследуемого. Поэтому, пока вершина сходящегося пучка лучей (фокус) будет находиться в пределах зрачка наблюдателя, зрачок исследуемого будет освещен равномерно. Если же освещенный участок в1 переместится, например, книзу настолько, что фокус а1 выйдет за пределы отверстия зеркала (зрачка), в глаз наблюдателя не смогут попасть все лучи, исходящие из исследуемого глаза, и его зрачок сразу станет черным.


    Из этого вытекает следующее основное положение скиаскопии: движения тени не наблюдается, если дальнейшая точка ясного зрения исследуемого глаза совпадает с плоскостью зеркала (глазом наблюдателя).
В разобранном случае движение тени отсутствовало потому, что при миопии в 1,0 D дальнейшая точка этого глаза удалена на 1 метр, а исследование также производилось с расстояния в 1 метр.

Разумеется, движения тени не будет и при других ок (сгонку офталмоскопа или.радужку) и в глаз исследующего не попадут; вследствие этого, верхняя часть зрачка, откуда исходят эти лучи, будет казаться затемненной (пучок лучен, не попадающих в глаз наблюдателя, заштрихован).

Чем больше освещенный участок в1 сместится книзу, тем значительнее пучок параллельных лучей отклонится кверху. Очевидно, что при этом в глаз наблюдателя уже не сможет попасть большая часть верхнего отдела смещенного пучка; отрезок ок, указывающий какая часть лучей встретила па своем пути препятствие, а также соответствующий ему отрезок нм (высота тени) увеличатся и наблюдателю будет казаться, что день перемещается сверху вниз.
Здесь отрезки ок и нм будут всегда равны друг другу, так как они являются противоположными сторонами параллелограмма онмк. При гиперметропии же отрезок мн всегда меньше отрезка ок, поэтому, при одной и той же быстроте смещения пучка лучей, движение тени при эмметропии будет быстрее, чем при гиперметропии.

При миопии слабее 1,0 D лучи, исходящие из освещенного участка в, соберутся позади глаза исследующего в дальнейшей точке а (рис. 24). Если освещенный участок переместится из в в в1, то дальнейшая точка передвинется из а в а1.

При этом в глаз наблюдателя не сможет попасть пучок лучей, ограниченный линиями мо и нк (заштрихован). Следовательно, и в этом случае у наблюдателя получится впечатление о появления в верхней части зрачка тени, которая, при дальнейшем смещении пучка лучей кверху, будет двигаться книзу. В этом случае мн будет всегда больше ок, поэтому, при одной и той же скорости смещения мучка лучей кверху теш. будет двигаться быстрее, чем при эмметропии.

Таким образом, при гиперметропии, эмметропии, а также миомии слабее 1,0 D тень перемещается в сторону движения зеркала. При одной и той же скорости вращения зеркала течь наиболее быстро двигается при миопии слабее 1,0 D медленнее при эмметропии и еще медленнее при гиперметропии. С увеличением степени гиперметропии быстрота движения тени уменьшается.

3. Исследуемый глаз миоп в 1,0 D. В этом случае важнейшая точка ясного зрения удалена от исследуемого глаза на расстояние 1 метра. Следовательно, лучи, исходящие из освещенного участка в, соберутся в сопряженном фокусе и, который совпадает с плоскостью зеркала NЕ (рис. 25). Очевидно, что при этом условии не может быть такого положения, чтобы в глаз наблюдателя попадала только часть лучей, исходящих из глаза исследуемого. Поэтому, пока вершина сходящегося пучка лучей (фокус) будет находиться в пределах зрачка, зрачок исследуемого будет освещен равномерно.

Если же освещенный участок в1 переместится, например, книзу настолько, что фокус а1 выйдет за пределы отверстия зеркала зрачка), в глаз наблюдателя не смогут попасть все лучи, исходящие из исследуемого глаза, и его зрачок сразу станет черным.

Из этого вытекает следующее основное положение скиаскопии: движения тени не наблюдается, если важнейшая точка ясного зрения исследуемого глаза совпадает с плоскостью зеркала (глазом наблюдателя).

В разобранном случае движение теин отсутствовало потому, при миопии в 1.0 D дальнейшая точка этого глаза удалена и 1 метр, а исследование также производилось с расстояния в 1 метр.

Разумеется, движения тени не будет и при других степенях миопии, если скиаскопию производить с соответствующего расстояния.

Например:

  1. при скиаскопии с расстояния в 80 см тени не будет и глазу, у которого дальнейшая точка удалена на 80 см, т. е. при миопии, примерно, в 1,25 D;
  2. тени не будет при скиаскопии с расстояния в 66,5 см в глазу с punctum remotum в 66.5 см, т. е. при миопии в 1,5 D;
  3. при скиаскопии с расстояния в 50 см тени не будет в глазу с миопией в 2,0 D (punctum remotum в 50 СМ) И т. д.
Скиаскопия с помощью вогнутого зеркала. Вогнутое зеркало отличается тем, что оно собирает падающие на него лучи в своем фокусе. Отсюда вытекает и все отличие скиаскопии при пользовании вогнутым зеркалом.

Лучи, исходящие от источника света К (рис. 26), падают на вогнутое зеркало, находящееся в положении NE, и после отражения от него они собираются в фокусе а. Это воздушное изображение пламени и служит источником освещения. Отсюда лучи идут в исследуемый глаз, где и освещают определенный участок в.


При повороте зеркала книзу, т. е. когда оно займет положение N1Е1, воздушное изображение пламени передвинется из а в а1, освещенный же участок на дне исследуемого глаза переместится из в в в1. Следовательно, при повороте вогнутого зеркала в каком-либо направлении, освещенный участок на дне глаза перемещается в противоположную сторону, при исследовании же плоским зеркалом, освещенный участок, как это было установлено выше, перемещается в сторону движения зеркала.

Отсюда очевидно, что при скиаскопии вогнутым зеркалом результат получится обратный: при миопии больше 1,0 D тень будет двигаться в ту же сторону, что и зеркало, при миопии слабее 1,0 D эмметропии и гиперметропии - в сторону противоположную движению зеркала. Что касается объяснения причины возникновения и кажущегося наблюдателю перемещения тени, то оно такое же, как и при исследовании плоским зеркалом.

В общем, основные положения, вытекающие из теории скиаскопии, могут быть сформулированы следующим образом:

  1. При скиаскопии плоским зеркалом тень движется в противоположном направлении, если дальнейшая точка ясного зрения исследуемого глаза находится между зеркалом (глазом наблюдателя) и исследуемым глазом.
  2. При скиаскопии плоским зеркалом тень движется в том же направлении, если дальнейшая точка исследуемого глаза находится позади зеркала (глаза наблюдателя) или в бесконечности, или позади исследуемого глаза (в отрицательном пространстве).
  3. При скиаскопии вогнутым зеркалом соотношения обратные: в первом случае направление движения тени совпадает с движениями зеркала, во втором - тень двигается в противоположном направлении.
  4. Появление тени не наблюдается (зрачок будет или равномерно красным, или сразу становится черным), если дальнейшая точка исследуемого глаза совпадает с плоскостью зеркала (зрачком наблюдателя).
  5. Быстрота движения тени уменьшается по мере возрастания как степени миопии, так и степени гиперметропии.

ПРАКТИЧЕСКОЕ ПРИМЕНЕНИЕ СКИАСКОПИИ


Скиаскопия так же, как и офтальмоскопия, производится в затемненной комнате. Источник света помещается слева и несколько кзади от исследуемого на одном уровне с глазом. Лучше, если лампа прикрыта щитком так, чтобы исследуемый глаз оставался затемненным.

Обычно предпочитают скиаскопировать плоским зеркалом, так как при освещении глаза неконцентрированным пучком света зрачок не так сильно суживается и тень видна более отчетливо. Скиаскопирование одними производится с расстояния в 1 метр, другими - с 75 см, что примерно соответствует расстоянию от глаза исследующего до конца его вытянутой вперед левой руки.

Аккомодация исследуемого глаза должна быть расслаблена, так как в противном случае гиперметропии может оказаться ослабленной, а миопия увеличенной. Для этого исследуемому предлагают смотреть вдаль, мимо разноименного уха наблюдателя, что необходимо еще и для того, чтобы глаз принял такое положение, при котором рефракция определялась бы для участка дна глаза, лежащего вблизи желтого пятна. Что касается аккомодации исследующего, то она никакого влияния на результат исследования не оказывает. Для того, чтобы лучше видеть тень исследующий может пользоваться своими обычными корригирующими очками, помещая при этом зеркало впереди очкового стекла.

Затем с установленного расстояния направляют на зрачок рефлекс и, производя легкие вращательные движения зеркалом, выясняют характер движения тени.

Если при исследовании плоским зеркалом тень движется в обратном направлении (при ВОГНУТОМ зеркале в ту же сторону), значит, дальнейшая точка находится между исследующим и исследуемым глазом, т. е. в исследуемом Глазу имеется миопия больше одной диоптрии. Ориентировочное представление о степени ее дает быстрота движения тени: быстрое движение тени указывает на слабую, медленное - на высокую миопию.

Точное же определение степени миопии может быть произведено лишь с помощью вогнутых линз, которые приставляют к исследуемому глазу, начиная со слабых и постепенно переходят к более сильным, тюка тень начнет двигаться в том же направлении. Остановиться необходимо на том стекле, с которым движение тени не отмечается.
С помощью этого стекла миопия корригирована настолько, что дальнейшая точка совпала с плоскостью зеркала (глазом наблюдателя), т. е. в исследуемом глазу еще осталась миопия в 1,0 D. Вся же миопия, очевидно, равна силе стекла, увеличенной на 1.0 D, т. е. нужно внести поправку на расстояние.

Если же при исследовании плоским зеркалом тень движется в том же направлении (при вогнутом зеркале – в обратном) рефракция исследуемого глаза может быть или гиперметропической или эмметропической или миопической (слабее 1,0 D).

Ориентировочное представление о рефракции опять же можно получить на основания скорости движения тени: при слабой миопии, эмметропии и слабой гиперметропии тень движется быстро, а про высокой гиперметропии - медленно. Для того же, чтобы точно определить вид рефракции, а также установить степень ее, и здесь необходимо применить линзы, но уже не вогнутые, а выпуклые. Линзы приставляют сначала слабые, а затем переходят к более сильным, пока изменится направление движения темп.

Остановиться необходимо на том стекле, с которым движение тени не отмечается. В этот момент дальнейшая, точка ясного зрения совпадает с плоскостью зеркала, т. е. будет удалена от исследуемого глаза па расстояние 1 метра. Очевидно, что рефракция исследуемого глаза исправлена избыточно, гак как в нем теперь миопия в 1,0 D.
На истинную же рефракцию, следовательно, укажет сила стекла, уменьшенная на 1,0 D. Таким образом, опять вносится поправка на расстояние, но при миопии сила стекла увеличивалась на.1,0 D, а здесь уменьшается па 1,0 D. Если исследование, производится с расстояния не 1 метра, а какого-то другого, поправка вносится соответственно этому расстоянию. Например, при скиаскопии с расстояния 80-75 см поправка делается на 1.25 D, с расстояния 66,5 см на 1,5 D.

Для того, чтобы внося поправку, не впасть в ошибку, необходимо помнить, что к тому стеклу, с которым не отмечалось движение тени, соответствующая поправка прибавляется со знаком минус.

Примеры:

  1. При скиаскопии с расстояния 1 метра, движение тени не отмечалось со стеклом +2,0 D. Рефракция: +2,0 D + (-1,0 D)= + 1,0 D = Н 1.0 D.
  2. При скиаскопии с того же расстояния движение тени не отмечалось со стеклом + 1.0 D. Рефракция: - 1,0 D (-1,0 D)
  3. При скиаскопии с того же расстояния движение тени не отмечалось со стеклом -3,0 D. Рефракция: -3.0 D - (-1,0 D) - 4,0 D - М 4,0 D.
  4. При скиаскопии с расстояния 65-70 см. движение тени не отмечалось со стеклом 1,0 D. Рефракция: 1.0 D + (- 1,5 D) = -1,5 D – М 1,5 D.
  5. Движение тени при скиаскопии с расстояния 65-70 см не отмечалось без прикладывания стекол. Рефракция: 0+(-1,5 D)=-1,5 D -М 1,5 D.
    Скиаскопическое исследование можно производить и другим способом, при котором линзы или совсем не приставляются к исследуемому глазу, или приходится применять всего несколько корригирующих стекол. Сущность этого метода заключается в следующем.
Если по направлению движения тени установлена миопия, исследующий, делая все время вращательные, движения зеркалом, постепенно приближается к исследуемому глазу до тех пор, пока движение тени становится незаметным. В этот момент дальнейшая точка исследуемого глаза совпадает с плоскостью зеркала. Очевидно, что теперь, для того, чтобы определить рефракцию, нужно только измерить в сантиметрах расстояние между глазом исследующего и исследуемого и выразить найденную линейную величину в диоптриях. Например, если движение темп прекратилось на расстоянии 25 см, то миопия исследуемого глаза = 100/25- 4,0 D.

Этот способ достаточно точен при небольших степенях миопии, например, если при измерении расстояния допустить грубую ошибку в 10 см, скажем, 40 см принять за 50 см, то и в таком случае разница в найденной рефракции будет составлять всего 0,5 D (первое расстояние соответствует М 2,5 D, второе- М 2,0 D. При высоких же степенях миопии ошибка к измерении расстояния даже на 1 см может дать разницу и рефракции в 5,0 D (например, расстоянию в 4 см соответствует М 25,0 D. а расстоянию в 5 см М 20,0 D).

В связи с этим, при высоких степенях миопии необходимо часть ее предварительно корригировать, поместив перед глазом достаточной силы вогнутое стекло, а затем уже указанным способом производить скиаскопию. В данном случае, при вычислении степени близорукости необходимо к найденной путем измерения расстояния миопии прибавить силу помещенного перед глазом стекла.


Если движение тени указывает на гиперметропию, перед исследуемым глазом помещается достаточной силы выпуклая линза, с таким расчетом, чтобы гиперметропию перекорригировать и глаз на время скиаскопии искусственно сделать миопическим. Теперь, приближаясь к глазу, определяют степень близорукости. Предположим, что к глазу было приставлено стекло +6,0 D, после чего движение тени не определялось с расстояния 25 см; это соответствует М 4,0 D.

Очевидно, что +4,0 D из взятого стекла ушло па то, чтобы искусственно получить миопию в 4,0 D, а оставшиеся 2,0 D указывают па истинный характер рефракции исследуемого глаза, т. е. его рефракция Н 2.0 D. В общем, для того, чтобы определить рефракцию, из силы выпуклой Линзы необходимо отнять степень найденной миопии.

Для облегчения запоминания к наиболее важных с практической точки зрения правил скиаскопии, полезной может оказаться схема.

С помощью скиаскопии легко определяется и астигматизм. Для этого вращение зеркалом необходимо производить сначала в одном направлении, скажем, справа налево, а затем в другом - сверху вниз. Если при вращении зеркала в том и другом направлении разницы в характере движения тени не определяется, то астигматизма нет. Если же в одном меридиане в сравнении с другим отмечается разница в направлении движения, или в скорости перемещения тени, или в ее интенсивности, то это указывает на наличие астигматизма.

В этом случае рефракцию определяют в каждом меридиане в отдельности и таким образом устанавливается вид и степень астигматизма.

Если главные меридианы имеют по вертикальное и горизонтальное направление, а какое-то промежуточное, т. е. при астигматизме с косыми осями, наблюдается движение тени в косом направлении, несмотря на то, что вращение зеркала производится вокруг вертикальной пли горизонтальной оси. Для того, чтобы более точно определить направление косых меридианов, необходимо, с помощью соответствующего стекла или путем приближения к исследуемому глазу, нейтрализовать движение тени в одном из меридианов, тогда движение ее в другом из косых меридианов - выступает более отчетливо. Теперь вращение зеркала и определение рефракции производят, применяясь к выявленному направлению косых меридианов.


Результаты скиаскопии при определении астигматизма удобно отмечать с помощью следующей схемы (рис. 27). На листе бумаги рисуются две взаимно перпендикулярных линии, которые указывают направление осей. Мели направление осей совпадает с горизонтальным и вертикальным меридианом, линии рисуют так, чтобы одна из них располагалась горизонтально, а вторая - вертикально. При косом астигматизме линиям придают соответствующий наклон.

Против каждого из отмеченных таким образом меридианов указывается вид и степень обнаруженной рефракции. На изображенном рисунке в правом глазу оси совпадают е. вертикальным и горизонтальным меридианом; рефракция в горизонтальном меридиане Н 2,0 D, в вертикальном M 1.0D. В левом глазу оси отклонены в темноральную сторону, примерно, на 200; рефракция в одном из меридианов Е, в другом - М 2,5 D.

Неправильный астигматизм, характеризующийся, как известно, тем, что лучи преломляются с. различной силой не только в разных меридианах, но и в пределах одного и того же меридиана, скиаскопически определяется на том основании, что при вращении зеркалом на фоне красного зрачка отмечается беспорядочное движение различной интенсивности теней (пляска теней).

--------
Статья из книги: ..

Скиаскопия и рефрактометрия — методы определения рефракции глаза (силы преломления света в нём). Они наравне используются для проверки остроты зрения, так как оба считаются объективными. Точность результатов зависит, в основном, от квалификации врача.

Измерение рефракции проводится доктором. Чем выше квалификация специалиста, тем объективнее результаты.

Скиаскопия незаменима для исследования остроты зрения у детей и пациентов, не способных из-за нарушения психического развития рассказать о своих жалобах, а также при подозрении на симуляцию заболевания. В среднем продолжительность такой диагностики занимает 2-3 минуты.

Точность скиаскопии может быть нарушена, если не соблюдать технологии исследования или же если у пациента есть астигматизм.

Для того, чтобы естественная аккомодация не повлияла на итог, применяется искусственная циклоплегия — расширение зрачка при помощи капель («Атропин», «Тропикамид»).

Данный метод противопоказан лицам, страдающим светобоязнью и глаукомой.

Если нарушена точность или есть противопоказания, то исследование остроты зрения может быть выполнено при помощи рефрактометра. Он позволяет более точно определить главные меридианы глаза и установить степень астигматизма. Измерения, в зависимости от характеристик прибора, происходят в ручном или автоматическом режиме, результаты могут быть распечатаны. Данный метод не может применяться при замутнённом хрусталике (катаракте).

Как и в случае со скиаскопией, наиболее достоверные результаты получаются в условиях медицинского расширения зрачка. Погрешность зависит от настройки чувствительности прибора. Зачастую измерения выполняются младшим медицинским персоналом, а данные передаются доктору для расшифровки.

Бывает, что люди не удовлетворяются итогами какого-либо исследования и прибегают к помощи другого. В таком случае возможно расхождение выводов. Что делать, если результаты скиаскопии и рефрактометрии не совпадают?

  • убедиться, что диагностика проводилась в состоянии естественной и ослабленной (после циклоплегии) аккомодации;
  • уточнить квалификацию и стаж работы специалиста, проводившего исследование;
  • для исключения субъективных факторов, повлиявших на выводы, обратиться для повторной проверки в другие клиники;
  • узнать марку рефрактометра и точность его настройки, пройти проверку на других аппаратах.

При сопоставлении различных итогов необходимо помнить:

  • авторефрактометр выдаёт готовый результат для заказа корригирующих очков;
  • данные скиаскопического исследования записываются в виде «уголка» с обозначением рефракции глаза для дальнейшего подбора необходимой оптики;
  • переводом и сравнительным анализом результатов исследований для разных методик должен заниматься специалист с высокой квалификацией.

Скиаскопия (ретиноскопия, кератоскопия, теневая проба) – это инструментальный метод обследования рефракционной способности зрительного аппарата (способность оптической системы глаза преломлять поток света и менять его направление).

Описание метода

Глаз – это зрительный анализатор, сложная оптическая система, которая благодаря роговице и хрусталику преломляет световой поток. Ретиноскопия позволяет определить рефракционную способность, даже если пациент симулирует болезнь. С её помощью можно выявить функциональность зрительных органов у пациентов младшей категории, у людей с задержкой развития, в тех случаях, когда невозможно провести визометрию или рефрактометрию.

Во время проведения кератоскопии не применяется дорогостоящая медицинская техника. Но, несмотря на это, теневая проба – надёжный способ определения рефракционной способности зрительного анализатора. Проводить процедуру должен только опытный и квалифицированный офтальмолог со специальными навыками.

Показания

Скиаскопия назначается офтальмологом при наличии следующих нарушений зрительной функции:

  • впервые снизилась острота зрения (раньше подобных расстройств не было);
  • миопия – зрительная аномалия, при которой изображение объекта фокусируется перед сетчаткой;
  • гиперметропия – зрительная патология, при которой изображения дальних объектов фокусируются за сетчаткой;
  • астигматизм – расстройство зрения, при котором нарушается оптическое строение глаза (неправильная форма хрусталика или роговой оболочки), как следствие больной не чётко видит окружающие его предметы.

Астигматизм часто сочетается с миопией и гиперметропией.

Противопоказания к проведению ретиноскопии

В некоторых случаях скиаскопию проводить запрещено:

  • если пациент под воздействием наркотиков или спиртных напитков;
  • пациент имеет психические заболевания;
  • при высокой световой чувствительности зрительного анализатора;
  • при постоянном или периодическом повышении внутриглазного давления (глаукома);
  • при аллергии на циклоплегические препараты (атропин и циклодол);
  • дети до 8 лет.

В остальных случаях проводить кератоскопию разрешено.

Проведение

Скиаскопия – это инструментальный метод исследования, который проводят с помощью скиаскопа. Это специальный прибор для определения рефракционной способности глаз, который выглядит как зеркало на длинной ручке, его поверхность с одной стороны ровная, а с другой вогнутая.

Ход ретиноскопии.

  • Перед началом процедуры глаза обрабатывают циклоплегическими препаратами.
  • Пациент садится на стул напротив врача, на расстоянии от 65 до 100 см. Сбоку от него, на уровне его глаз находится источник света.
  • Офтальмолог размещает скиаскоп напротив глаза пациента и направляет световые лучи на зеркало так, чтобы они проникали через зрачок на внутреннюю поверхность глазного яблока. После этого глазное дно окрашивается в красный цвет.
  • Потом врач начинает двигать скиаскопом по вертикали. В результате этих движений освещённая зона смещается, создавая всё большую затемнённую зону (смотрится это как тёмное пятно на внутренней поверхности глазного яблока).

Врач оценивает рефракционную способность глаза в соответствии с направлением перемещения этого тёмного участка, именно из-за этого произошло название «теневая проба».

Следующий этап обследования – это определение аметропии (изменение рефракционной способности, при которой преломляющая способность глаза и длина его оси не соответствуют друг другу). Во время исследования врач использует скиаскопическую линейку, на которой размещены линзы с разной степенью преломления света. Пациент поочерёдно подносит линейку то к правому, то к левому глазу до тех пор, пока теневой участок не перестанет перемещаться по внутренней поверхности глаза.

Этот метод обследования не информативный, если существует подозрение на астигматизм. Чтобы вычислить степень рефракции необходимо провести дополнительные исследования, для этого используется специальная формула.

Медицинское заключение

Тёмный участок перестаёт двигаться, если дальняя точка ясного зрения совпадает с местонахождением врача (то есть размещается на расстоянии 1 м.).

При этом медицинские заключения будут такие.

  • Если тёмный участок двигается в том направлении, что и плоское зеркало, то у обследуемого гиперметропия, эмметропия или миопия около 1 дптр.
  • Если тёмное пятно двигается противоположно плоскому зеркалу, то у обследуемого гиперметропия или миопия от 1 дптр. и больше.
  • Если врач использует вогнутое зеркало, то все результаты противоположны применению прямого.
  • Если при использовании обоих зеркал тёмный участок отсутствовал или его движение невозможно отследить, то у обследуемого близорукость 1 дптр.

Итак, что такое скиаскопия (кератоскопия)? Кератоскопия – это высокоинформативный метод исследования рефракционной способности органов зрения. Это популярная процедура, которую проводят в государственных и частных офтальмологических клиниках.

Для более полного ознакомления с болезнями глаз и их лечением – воспользуйтесь удобным поиском по сайту или задайте вопрос специалисту.

Нарушение остроты зрения может быть в любом возрасте. Современная офтальмология оснащена высокоточным оборудованием, которое позволяет провести диагностику и коррекцию зрения как у взрослых, так и у совсем маленьких пациентов. Однако, наравне с новейшими приборами, существуют методы исследования функционального состояния зрительных органов, разработанные очень давно и основанные на опытности и профессионализме офтальмолога. Речь идёт о скиаскопии, или теневой пробе.

Что такое теневая проба и для чего проводится

Скиаскопия позволяет проверить состояние глаз человека, определить самую удалённую точку чёткого видения. Суть метода лежит в определении клинической рефракции глаза посредством направленной освещённости зрачка. Рефракция - это способность к преломлению световых лучей оптическими структурами органа зрения.

Синонимы скиаскопии - ретиноскопия и кератоскопия.

Оптическая система включает в себя роговицу, переднюю камеру, наполненную жидкостью, хрусталик и желеобразное содержимое стекловидного тела. Пройдя все эти участки, свет попадает на сетчатую оболочку, которая способна преобразовывать световые частицы в импульсы, попадающие в головной мозг, где складывается изображение. Единицами измерения остроты зрения являются диоптрии.

Клиническая рефракция - это местоположение главного фокуса, то есть точки, в которой пересекаются световые лучи, по отношению к сетчатой оболочке. Если этот задний фокус расположен на сетчатке, значит, зрение стопроцентное, то есть абсолютно нормальное - эмметропия. В случае изменения положения фокуса острота зрения нарушается. Так, при дальнозоркости месторасположение точки пересечения - позади сетчатой оболочки глаза, а при близорукости - перед ней.

Скиаскопия определяет клиническую рефракцию, которая представляет собой расположение точки пересечения преломлённых световых лучей по отношению к сетчатке

Скиаскопия позволяет объективно оценить степень нарушения рефракции практически у любого человека, включая самых маленьких детей. Особенно это важно, если нет возможности определить зрение посредством визометрии (с помощью таблиц) или провести рефрактометрию (оценить остроту зрения, используя специальное оборудование).

Скиаскопия может проводиться в условиях циклоплегии (искусственного выключения мышцы, ответственной за аккомодацию, с помощью медикаментов) или действующей аккомодации (приспособительной способности глаза фокусировать взгляд, чтобы видеть одинаково ясно объекты, расположенные далеко или близко).

Проведение исследования показано при различных нарушениях остроты зрения:

  • дальнозоркости, когда человек плохо видит близкорасположенные предметы;
  • близорукости, при которой пациент хорошо видит вблизи, но дальние объекты для него размыты;
  • астигматизме - патологии, при которой присутствует сразу несколько фокусов, при этом в одном глазу могут сочетаться различные типы рефракции (+ или -).

Теневая проба является ценным диагностическим методом обследования малышей, у которых ещё невозможно провести рефрактометрию с помощью аппарата и осуществить диагностику, используя офтальмологические таблицы. Метод применяют для постановки диагноза, для оценки эффективности проводимой терапии и на этапе диспансерного наблюдения.

Аппаратная рефрактометрия проводится с помощью приборов, которые нельзя применить по отношению к совсем маленьким детям

Противопоказаниями к проведению процедуры являются:

  • непереносимость циклоплегиков - препаратов, применяемых для временного паралича цилиарной (ресничной) мышцы, ответственной за аккомодацию;
  • глаукома - прогрессирующее заболевание, протекающее с повышением внутриглазного давления и приводящее к слепоте;
  • фотофобия - боязнь яркого света, проявляющаяся повышенной слезоточивостью;
  • психические нарушения с неадекватным поведением пациента;
  • состояние опьянения (алкоголем или наркотическими средствами).

В настоящее время исследование рефракции проводят не только посредством теневой пробы, но и с помощью компьютерных аппаратов - рефрактометров. Оба этих метода - объективны, достоверны и легкодоступны для оценки преломляющей способности оптической системы глаз.

Преимуществом скиаскопии является то, что её можно проводить самым маленьким пациентам, которых нельзя усадить за аппарат, а достоинство автоматической рефрактометрии - в более точном определении степени астигматизма у человека. К плюсам рефрактометрии можно отнести более быстрое её проведение в сравнении со скиаскопией, а также возможность проведения визометрии непосредственно после процедуры благодаря отсутствию слепящего воздействия, которое оказывает на глаза скиаскоп при выполнении ретиноскопии.

Проведение теневой пробы требует от офтальмолога определённых профессиональных навыков, а данные, которые получают во время этой манипуляции, могут иметь минимальные погрешности, как и при обследовании посредством аппарата.

Как проводится ретиноскопия

Подготовка к процедуре заключается в проведении циклоплегии. Для того чтобы отключить на время ресничную мышцу, в оба глаза закапывают раствор атропина в определённой возрастной дозировке двукратно в течение трёх дней и утром четвёртого дня. Теневую пробу можно начинать через час после последнего закапывания. При спорных результатах атропинизацию продлевают до 7 или 10 дней. Стандартную трёхдневную циклоплегию проводят перед первой скиаскопией у детей, а также у взрослых в сложных случаях. Применение атропина имеет определённый недостаток - после закапывания пациент долгое время испытывает трудности при зрительной работе на небольшом расстоянии, например, чтении.

Перед скиаскопией проводят циклоплегию - закапывают в глаза препараты, вызывающие временный паралич цилиарной мышцы, ответственной за аккомодацию

В последнее время для расслабления аккомодации офтальмологи используют препараты мягкого и короткого действия - растворы скополамина, гоматропина, циклоборина, амизила или готовые лекарства - Тропикам, Мидриацил, Цикложил. Их закапывают по 1 капле с промежутком в 10 минут и проводят теневую пробу через 45 минут. Такие препараты офтальмологи используют при повторных процедурах ретиноскопии у детей и при необходимости отключения аккомодации у взрослых. Пациентам старше 40 лет препараты для циклоплегии применяют после обязательного измерения глазного давления и только в тех ситуациях, когда без них невозможно обойтись. Это связано с тем, что такие лекарства могут у предрасположенных к глаукоме людей спровоцировать приступ.

Классическая циклоплегия заключается в закапывании в глаза раствора атропина

Циклоплегия необходима для полноценного обследования пациента - зрачок расширяется, и врач имеет возможность видеть не только центральную область глазного дна, но и периферические участки.

Теневую пробу проводят в затемнённом кабинете. Обследуемого усаживают на стул, сбоку от которого размещается источник света - на уровне уха пациента. Чаще всего это обычная лампа накаливания. Свет не должен падать на лицо того, кому проводят скиаскопию. Офтальмолог усаживается напротив, соблюдая расстояние в 67 см или 1 метр. Для проведения процедуры нужен скиаскоп - прибор, представляющий собой вогнутое с одной стороны и ровное с другой круглое зеркало с отверстием посередине и ручкой. Врач берёт в руку устройство и направляет отражённый от лампы луч света в глаз обследуемого так, чтобы он через зрачок попал на глазное дно.

Скиаскопия проводится с помощью скиаскопа - зеркала с отверстием посередине

Если предварительно была проведена циклоплегия, пациенту даётся указание смотреть в центр скиаскопа, при сохранённой аккомодации - мимо уха офтальмолога на стороне осматриваемого глаза.

Затем врач начинает медленно двигать прибор вокруг вертикальной и горизонтальной оси ручки, при этом область освещения глазного дна сдвигается, образуется тень (тёмное пятно). Обычно для обследования используют плоскую зеркальную сторону скиаскопа, так как в этом случае пятно более чёткое и выраженное, его перемещение легче оценить. Исходя из того, в какую сторону передвигается участок затемнения, офтальмолог делает вывод о характере рефракции пациента.

При проведении скиаскопии врач может находиться от пациента на расстоянии 1 метра или 67 см

После определения вида нарушения зрения врач проводит более точные измерения преломляющей силы оптической структуры глаз, для чего использует приспособление - скиаскопические линейки. Они представляют собой рамки, между которыми зафиксированы линзы разной оптической силы, на каждом инструменте расположены только отрицательные или лишь положительные стёкла.

Применяется метод нейтрализации перемещения тёмного пятна. Линейку с нужными линзами дают в руку обследуемому, при этом она должна располагаться вертикально не ближе 12 мм от роговицы глаза. Врач направляет луч в зрачок через линзы начиная с самой меньшей диоптрии (0,5) и постепенно, продвигаясь к самым сильным стёклам, определяет ту, при которой тёмное пятно пропадает. Нейтрализация тени происходит тогда, когда глаз находится в самом центре фокуса лучей, отражённых от глазного дна.

После определения типа рефракции офтальмолог проводит измерение степени миопии или гиперметропии с помощью скиаскопических линеек

Вместо скиаскопических линеек иногда применяют линзы с разной оптической силой, которые вставляются в специальную оправу. Такая методика требует временных затрат, однако она имеет преимущества - большую точность в сравнении с линейками и возможность диагностики при астигматизме посредством цилиндрических линз (цилиндроскиаскопии). Перед данным исследованием врач может применить полосчатую, или штрих-скиаскопию. При этом используются специальные насадки на скиаскоп, имеющие не отверстие, а прорезь в форме полоски.

Видео: проведение процедуры

Интерпретация результатов обследования

Если при проведении обследования с использованием плоского скиаскопа тёмное пятно передвигается в ту же сторону, в которую врач поворачивает зеркало, то это говорит о том, что у человека эмметропия (зрение в норме), дальнозоркость или слабая близорукость (при размещении врача на расстоянии одного метра от пациента - 1,0 д, на расстоянии 0,67 м - 1,5 д).

Если тень скользит в сторону, противоположную повороту скиаскопа, это говорит о близорукости выше 1,0 диоптрии (или выше 1,5 диоптрии в случае расстояния 67 см).

Если отсутствует передвижение тёмного пятна во время скиаскопии, врач делает вывод: у пациента близорукость в 1,0 д, то есть точка самого чёткого видения совпадает со скиаскопом, находящимся на расстоянии 1 метра (1,5 д при расстоянии 0,67 метра).

По направлению движения тени во время движения скиаскопа врач делает вывод о характере рефракции

Затемнение может двигаться разнонаправленно при сложном астигматизме. Такое явление называется симптомом ножниц и требует дополнительных обследований.

На втором этапе ретиноскопии с помощью скиаскопических линеек врач определяет величину миопии или гиперметропии с точностью от 0,25 до 0,5 диоптрий. Для вычисления рефракции к силе линзы, на которой остановилось обследование (нейтрализовалась тень), прибавляют 1,0 д при близорукости и отнимают 1,0 д при дальнозоркости. Наиболее правильные результаты пробы можно получить только после отключения аккомодации.

Особенности скиаскопии у детей

Первый осмотр у офтальмолога должен проводиться в 1 месяц (не позднее трёхмесячного возраста). Помимо стандартного обследования, врач может определить рефракцию органов зрения ребёнка с применением теневой пробы. В полгода и в год проводятся повторные осмотры с контролем динамики рефракции глаза. В этом возрасте в норме у малышей рефракция составляет от +1 до +3 диоптрий (дальнозоркость). Повторное проведение скиаскопии применяется ввиду того, что у новорождённых тяжело вызвать полноценное расслабление аккомодации даже сильнодействующими средствами.

Скиаскопия - объективный метод исследования рефракции у маленьких детей

Современные аппараты позволяют исследовать рефракцию и осматривать глазное дно с узким зрачком. Однако у детей раннего возраста чаще применяют скиаскопию, причём обязательно с расширенным зрачком, так как многие патологические изменения на периферии глазного дна могут остаться вне видимости врача. Детям, как правило, закапывают в глаза препараты короткого действия - Мидриацил (Тропикамид) или раствор атропина.

Для циклоплегии у маленьких детей применяют препараты короткого действия, такие как Мидриацил

Ещё одной особенностью проведения скиаскопии у малышей до года является размещение врача от пациента на расстоянии 67 см, при этом скиаскопические линейки окулист держит и перемещает сам. С четырёх-пяти лет детям уже можно определять рефракцию с помощью аппаратов и офтальмологических таблиц.

Несмотря на то что метод исследования рефракции глаза с помощью скиаскопа был разработан почти 150 лет назад, он до сих пор успешно применяется офтальмологами. Высокая точность и объективность теневой пробы позволяет вовремя выявить нарушения зрения у взрослых и детей и своевременно провести оптическую коррекцию.

16.11.2010, 19:47

17.11.2010, 11:18

Аваторефрактометрия - метод обьективный. Скиаскопия - субьективный. Конечно же скиаскопия никакой "юридической силы" иметь не должна, так как есть человеческий фактор. В АРМ он отсутствует. Есть только погрешность аппарата, которая всегда постоянна. В вопросах экспертизы должна использоваться АРМ однозначно.

Сам с появлением АРМ скиаскопию забыл напрочь, так же как и зеркальный офтальмоскоп с появлением налобного бинокулярного. Зачем нужен запорожец, если есть мерседес? :)

17.11.2010, 12:31

Насчёт экспертизы не знаю, никогда не участвовала, а у себя на приёме часто делаю и то и другое - результаты почти всегда одинаковые. Это к вопросу об учёте рефракции врача. У меня миопический астигматизм на оба глаза.
Мне просто скиаскопию забывать нельзя, т.к. работаю в том числе с маленькими детьми, которых за автореф не усадишь.

17.11.2010, 19:44

До тех пор, пока прибор будет выдавать сухие цифры - сохраняется возможность грубой ошибки измерений. При ошибках авторефрактометрии (особенно если исследование проводится однократно) нет возможности ее выявить по косвенным данным. Скиаскопия же, хотя и имеет меньшую точность, дает некоторую избыточность информации, что позволяет опытному врачу исключать явно ошибочные данные.
Вообще же владеть скиаскопией полезно, хотя бы для общего развития:ab:
Аваторефрактометрия - метод обьективный. Скиаскопия - субьективный.
Побойтесь бога! Во всех учебниках скиаскопия - объективный метод определения рефракции! Скиаскопия (от греч. scia - тень, scopeo - осматриваю) - способ объективного исследования клинической рефракции... [Ссылки могут видеть только зарегистрированные и активированные пользователи]
Правда он объективен лишь по отношению к пациенту, но субъективен для врача.

Зачем нужен запорожец, если есть мерседес?
Чтобы кататься не по асфальту, а по болоту. Мерс - утонет, запорожець - выплывет:ab:


В том то и прелесть скиаскопии, рефракция врача не играет никакой роли, если позволяет видеть движение тени в зрачке пациента!

20.11.2010, 17:05

Уважаемые коллеги! Я врач-интерн, работаю только 4-й месяц. Заметил, что опытные офтальмологи при определении рефракции предпочитают пользоваться методом скиаскопии несмотря на наличие авторефрактометра. В вопросах, касающихся экспертизы (например, при определении степени годности к службе в ВС и пр.), также ключевую роль отводят скиаскопическому методу. При этом: 1) сколько специалистов не обследуют одного и того же пациента, столько получается различных данных; 2) разница часто достигает 1,5Д; 3) данные скиаскопии редко совпадают с данными авторефрактометра, даже при отсутствии астигматизма либо при нулевых его осях; 4) опираясь на данные авторефрактометрии удается достичь более полной коррекции аметропий, чем при пользовании скиаскопией. Пожалуйста, выскажите свое мнение относительно этих 4-х пунктов. Да, и, все-таки, рефракция врача как-либо должна учитываться (у меня +2,5 оба глаза)?
Если уж образно, то мерседес, олицетворяющий в нашем случае авторефрактометр, называют мерином и выдаёт результаты авторефрактометр иногда, как сивый мерин брешет. Хорошее сравнение с мерседесом.
В приказе о порядке проведения ВВ экспертизы четко написано, что учитывается рефракция, полученная методом скиаскопии. Хотя давно не заглядывал в приказ, возможно, что то изменилось.
При скиаскопии можно заметить неправильность астигматизма, заподозрить кератоконус, обычный рефрактометр этого не дастю

20.11.2010, 17:50

1) сколько специалистов не обследуют одного и того же пациента, столько получается различных данных;
У одного и того же пациента (в т.ч. с широкими зрачками), которого Вы обследуете лично будут расхождения и при повторной в течение нескольких минут авторефрактометрии или скиаскопии. Пускай Вас это не пугает.
2) разница часто достигает 1,5Д; При скиаскопии, выполненой двумя врачами, точность +/-1,0 дптр. Я "соврал" в сторону усиления рефракции, а коллега в сторону ослабления рефракции. Итого крайнее возможное расхождение 2,0 дптр. Это бывает редко, но укладывается в допустимую погрешность. Скиаскопируем повторно, сравниваем с данными авто- и субъективной рефрактометрии.
3) данные скиаскопии редко совпадают с данными авторефрактометра, даже при отсутствии астигматизма либо при нулевых его осях;
При выработке навыка и использовании циклоплегии расхождения уменьшаются. Частое совпадение данных обеих методик настораживает в смысле: умеет ли доктор скиакопировать?
4) опираясь на данные авторефрактометрии удается достичь более полной коррекции аметропий, чем при пользовании скиаскопией.
Это чепуха. Конечно, при наличии астигматизма подбор идет в большинстве случаев быстрее. Точность же достигается субъективным подбором с уточняющими пробами.
Да, и, все-таки, рефракция врача как-либо должна учитываться (у меня +2,5 оба глаза)?
Нет, не должна. Коррекция доктора позволяет таковому лучше видеть движение тени, не более.