Реактор на быстрых нейтронах.

В структуре крупномасштабной атомной энергетики важная роль отводится реакторам на быстрых нейтронах с замкнутым топливным циклом. Они позволяют почти в 100 раз повысить эффективность использования естественного урана и, тем самым, снять ограничения на развитие атомной энергетики со стороны природных ресурсов ядерного топлива.
В 30 странах мира сейчас работает около 440 ядерных реакторов, которые обеспечивают производство около 17% всей электроэнергии, вырабатываемой в мире. В промышленно развитых странах доля "атомного" электричества составляет, как правило, не менее 30% и неуклонно увеличивается. Однако, по мнению ученых, быстро растущая атомная энергетика, основанная на современных «тепловых» ядерных реакторах, используемых на действующих и строящихся АЭС (большинство - с реакторами типа ВВЭР и LWR), неизбежно уже в текущем столетии столкнется с нехваткой уранового сырья по причине того, что делящимся элементом топлива для этих станций является редкий изотоп урана-235.
В реакторе на быстрых нейтронах (БН) при ядерной реакции деления рождается избыточное количество вторичных нейтронов, поглощение которых в основной массе урана, состоящей из урана-238, ведет к интенсивному образованию нового ядерного делящегося материала плутония-239. В результате, из каждого килограмма урана-235 наряду с выработкой энергии можно получать более одного кг плутония-239, который можно использовать в качестве топлива в любых реакторах АЭС вместо редкого урана-235. Этот физический процесс, называемый воспроизводством топлива, позволит вовлечь в оборот атомной энергетики весь природный уран, включая основную его часть - изотоп уран-238 (99,3% от общей массы ископаемого урана). Этот изотоп в современных АЭС на тепловых нейтронах практически не участвует в производстве энергии. В результате производство энергии при существующих ресурсах урана и при минимальном воздействии на природу, можно было бы увеличить почти в 100 раз. В таком случае атомной энергии человечеству хватит на несколько тысячелетий.
По оценкам ученых, совместная работа "тепловых" и "быстрых" реакторов в пропорции примерно 80:20% обеспечитатомной энергетике наиболее эффективное использование урановых ресурсов. При таком соотношении быстрые реакторы будут производить достаточное количество плутония-239 для работы атомных электростанций с реакторами на тепловых нейтронах.
Дополнительным преимуществом технологии быстрых реакторов с избыточным количеством вторичных нейтронов является возможность "выжигать" долгоживущие (с периодом распада до тысяч и сотен тысяч лет) радиоактивные продукты деления, превращая их в короткоживущие с периодом полураспада не более 200-300 лет. Такие преобразованные радиоактивные отходы могут быть надежно захоронены в специальных хранилищах без нарушения природного радиационного баланса Земли.

Работы в области ядерных реакторов на быстрых нейтронах реакторов были начаты в 1960 г. проектированием первого опытно-промышленного энергетического реактора БН-350. Этот реактор был пущен в 1973 г. и успешно эксплуатировался до 1998 г.
В 1980 г. на Белоярской АЭС в составе энергоблока №3 был введен в строй следующий, более мощный энергетический реактор БН-600 (600 МВт(э)), который продолжает надежно работать до настоящего времени, являясь самым крупным из действующих реакторов этого типа в мире. В апреле 2010 г. реактор полностью отработал проектный срок службы 30 лет с высокими показателями надежности и безопасности. В течение длительного периода эксплуатации КИУМ энергоблока поддерживается на стабильно высоком уровне - около 80%. Внеплановые потери менее 1,5%.
За последние 10 лет эксплуатации энергоблока не было ни одного случая аварийного останова реактора.
Выход долгоживущих газоаэрозольных радионуклидов в окружающую среду отсутствует. Выход инертных радиоактивных газов в настоящее время пренебрежимо мал и составляет <1% от допустимого по санитарным нормам.
Эксплуатация реактора убедительно продемонстрировала надежность проектных мер по предотвращению и локализации течей натрия.
По показателям надёжности и безопасности реактор БН-600 оказался конкурентоспособным с серийными тепловыми реакторами на тепловых нейтронах (ВВЭР).

Рисунок 1. Реакторный (центральный) зал БН-600

В 1983 г. на базе БН-600 предприятием был разработан проект усовершенствованного реактора БН-800 для энергоблока мощностью 880 МВт(э). В 1984 г. были начаты работы по сооружению двух реакторов БН-800 на Белоярской и новой Южно-Уральской АЭС. Последующая задержка сооружения этих реакторов была использована для доработки проекта с целью дальнейшего повышения его безопасности и улучшения технико-экономических показателей. Работы по сооружению БН-800 были возобновлены в 2006 г. на Белоярской АЭС (4-й энергоблок) и должны быть завершены в 2013 г.

Рисунок 2. Реактор на быстрых нейтронах БН-800 (вертикальный разрез)

Рисунок 3. Макет реактора БН-800

Перед строящимся реактором БН-800 поставлены следующие важные задачи:

  • Обеспечение эксплуатации на MOX-топливе.
  • Экспериментальная демонстрация ключевых компонентов закрытого топливного цикла.
  • Отработка в реальных условиях эксплуатации новых видов оборудования и усовершенствованных технических решений, введенных для повышения показателей экономичности, надежности и безопасности.
  • Разработка инновационных технологий для будущих реакторов на быстрых нейтронах с жидкометаллическим теплоносителем:
    • испытания и аттестация перспективного топлива и конструкционных материалов;
    • демонстрация технологии выжигания минорных актинидов и трансмутации долгоживущих продуктов деления, составляющих наиболее опасную часть радиоактивных отходов атомной энергетики.

В ОАО "ОКБМ Африкантов" ведётся разработка проекта усовершенствованного коммерческого реактора БН-1200 мощностью 1220 МВт.

Рисунок 3. Реактор БН-1200 (вертикальный разрез)

Планируется следующая программа реализации этого проекта:

  • 2010…2016 гг. - разработка техпроекта реакторной установки и выполнение программы НИОКР.
  • 2020 г. - ввод в действие головного энергоблока на МОХ- топливе и организация его централизованного производства.
  • 2023…2030 гг. - ввод в эксплуатацию серии энергоблоков суммарной мощностью около 11 ГВт.

Наряду с решениями, подтвержденными положительным опытом эксплуатации БН-600 и заложенными в проект БН-800, в проекте БН-1200 используются новые решения, направленные на дальнейшее улучшение технико-экономических показателей и повышение безопасности.
По технико-экономическим показателям:

  • повышение коэффициента использования установленной мощности с планируемой величины 0,85 для БН-800 до 0,9;
  • поэтапное повышение выгорания МОХ-топлива с достигнутого уровня в экспериментальных ТВС 11,8 % т.а. до уровня 20 % т.а. (среднее выгорание ~140 МВт сут/кг);
  • увеличение коэффициента воспроизводства до ~1,2 на уран-плутониевом оксидном топливе и до ~1.45 на смешанном нитридном топливе;
  • снижение удельных показателей металлоёмкости в ~1,7 раза по сравнению с БН-800
  • увеличение срока службы реактора с 45 лет (БН-800) до 60 лет.

По безопасности:

  • вероятность тяжёлого повреждения активной зоны должна быть на порядок меньше требований нормативных документов;
  • санитарно-защитная зона должна находиться в границах площадки АЭС для любых проектных аварий;
  • граница зоны защитных мероприятий должна совпадать с границей площадки АЭС для тяжёлых запроектных аварий, вероятность реализации которых не превышает 10-7 на реактор/год.

Оптимальное сочетание референтных и новых решений и возможность расширенного воспроизводства топлива позволяют отнести данный проект к ядерным технологиям IV поколения.

ОАО "ОКБМ Африкантов" активно участвует в международном сотрудничестве по быстрым реакторам. Оно являлось разработчиком проекта китайского экспериментального реактора на быстрых нейтронах CEFR и главным подрядчиком по изготовлению основного оборудования реактора, участвовало в осуществлении физического и энергетического пусков реактора в 2011 г. и оказывает помощь в освоении его мощности. В настоящее время идет подготовка межправительственного соглашения о сооружении в КНР демонстрационного быстрого реактора с натриевым теплоносителем (CDFR) на базе проекта БН-800 с участием ОКБМ и других предприятий Госкорпорации "Росатом".

После пуска и успешной эксплуатации Первой в мире АЭС в 1955 году по инициативе И. Курчатова было принято решение о строительстве на Урале промышленной атомной электростанции с водо-водяным реактором канального типа. К особенностям этого типа реакторов относится перегрев пара до высоких параметров непосредственно в активной зоне, что открывало возможность для использования серийного турбинного оборудования.

В 1958 году в центре России в одном из живописнейших уголков уральской природы развернулось строительство Белоярской АЭС. Для монтажников эта станция началась еще в 1957 году, а так как в те времена тема атомных станций была закрыта, в переписке и жизни она называлась Белоярская ГРЭС. Начинали эту станцию работники треста «Уралэнергомонтаж». Их усилиями в 1959 году была создана база с цехом изготовления водопаропроводов (1 контур реактора), построено три жилых дома в поселке Заречный и начато возведение главного корпуса.

В 1959 году на строительстве появились работники треста «Центроэнергомонтаж», которым поручалось монтировать реактор. В конце 1959 года на строительство АЭС был перебазирован участок из Дорогобужа Смоленской области и монтажные работы возглавил В. Невский, будущий директор Белоярской АЭС. Все работы по монтажу тепломеханического оборудования были полностью переданы тресту «Центроэнергомонтаж».

Интенсивный период строительства Белоярской АЭС начался с 1960 года. В это время монтажникам пришлось вместе с ведением строительных работ осваивать новые технологии по монтажу нержавеющих трубопроводов, облицовок спецпомещений и хранилищ радиоактивных отходов, монтаж конструкций реактора, графитовую кладку, автоматическую сварку и т.д. Обучались на ходу у специалистов, которые уже принимали участие в сооружении атомных объектов. Перейдя от технологии монтажа тепловых электростанции к монтажу оборудования атомных электростанций, работники «Центроэнергомонтажа» успешно справились со своими задачами, и 26 апреля 1964 года первый энергоблок Белоярской АЭС с реактором АМБ-100 выдал первый ток в Свердловскую энергосистему. Это событие наряду с вводом в эксплуатацию 1-го энергоблока Нововоронежской АЭС означало рождение большой ядерной энергетики страны.

Реактор АМБ-100 стал дальнейшим усовершенствованием конструкции реактора Первой в мире атомной электростанции в Обнинске. Он представлял собой реактор канального типа с более высокими тепловыми характеристиками активной зоны. Получение пара высоких параметров за счет ядерного перегрева непосредственно в реакторе стало большим шагом вперед в развитии атомной энергетики. реактор работал в одном блоке с турбогенератором мощностью 100 МВт.

В конструктивном отношении реактор первого энергоблока Белоярской АЭС оказался интересен тем, что он создавался фактически бескорпусным, т. е, реактор не имел тяжелого многотонного прочного корпуса, как, скажем, аналогичный по мощности реактор водо-водяного типа ВВЭР с корпусом длиной 11-12 м, диаметром 3-3,5 м, толщиной стенок и днища 100-150 мм и более. Возможность строительства АЭС с реакторами бескорпусного канального типа оказалась весьма заманчивой, поскольку освобождала заводы тяжелого машиностроения от необходимости изготовления стальных изделий массой 200-500 т. Но осуществление ядерного перегрева непосредственно в реакторе оказалось связано с известными трудностями регулирования процесса, особенно в части контроля за его ходом, с требованием точности работы очень многих приборов, наличием большого количества труб различных размеров, находящихся под высоким давлением, и т. д.

Первый блок Белоярской АЭС достиг полной проектной мощности, однако из-за относительно небольшой установленной мощности блока (100 МВт), сложности его технологических каналов и, следовательно, дороговизны, стоимость 1 кВтч электроэнергии оказалось существенно выше, чем у тепловых станций Урала.

Второй блок Белоярской АЭС с реактором АМБ-200 был построен быстрее, без больших напряжений в работе, так как строительно-монтажный коллектив был уже подготовлен. Реакторная установка была значительно усовершенствована. Она имела одноконтурную схему охлаждения, что упростило технологическую схему всей АЭС. Так же как в первом энергоблоке, главная особенность реактора АМБ-200 выдаче пара высоких параметров непосредственно в турбину. 31 декабря 1967 года энергоблок № 2 был включен в сеть – этим было завершено сооружение 1-й очереди станции.

Значительная часть истории эксплуатации 1-й очереди БАЭС была наполнена романтикой и драматизмом, свойственными всему новому. В особенности это было присуще периоду освоения блоков. Считалось, что проблем в этом быть не должно – были прототипы от реактора АМ «Первой в мире» до промышленных реакторов для наработки плутония, на которых апробировались основные концепции, технологии, конструктивные решения, многие типы оборудования и систем, и даже значительная часть технологических режимов. Однако оказалось, что разница между промышленной АЭС и ее предшественниками настолько велика и своеобразна, что возникли новые, ранее неведомые проблемы.

Наиболее крупной и явной из них оказалась неудовлетворительная надежность испарительных и пароперегревательных каналов. После непродолжительного периода их работы появлялась разгерметизация твэлов по газу или течь теплоносителя с неприемлемыми последствиями для графитовой кладки реакторов, технологических режимов эксплуатации и ремонта, радиационного воздействия на персонал и окружающую среду. По научным канонам и расчетным нормативам того времени этого не должно было быть. Углубленные исследования этого нового явления заставили пересмотреть установившиеся представления о фундаментальных закономерностях кипения воды в трубах, так как даже при малой плотности теплового потока возникал неизвестный ранее вид кризиса теплообмена, который был открыт в 1979 году В.Е. Дорощуком (ВТИ) и впоследствии назван «кризис теплообмена II рода».

В 1968 году было принято решение о строительстве на Белоярской АЭС третьего энергоблока с реактором на быстрых нейтронах – БН-600. Научное руководство созданием БН-600 осуществлялось Физико-энергетическим институтом, проект реакторной установки был выполнен Опытным конструкторским бюро машиностроения, а генеральное проектирование блока осуществляло Ленинградское отделение «Атомэлектропроект». Строил блок генеральный подрядчик – трест «Уралэнергострой».

При его проектировании учитывался опыт эксплуатации реакторов БН-350 в г. Шевченко и реактора БОР-60. Для БН-600 была принята более экономичная и конструктивно удачная интегральная компоновка первого контура, в соответствии с которой активная зона реактора, насосы и промежуточные теплообменники размещаются в одном корпусе. Корпус реактора, имеющий диаметр 12,8 м и высоту 12,5 м, устанавливался на катковых опорах, закрепленных на фундаментной плите шахты реактора. Масса реактора в сборе составляла 3900 т., а общее количество натрия в установке превышает 1900 тонн. Биологическая защита была выполнена из стальных цилиндрических экранов, стальных болванок и труб с графитовым заполнителем.

Требования к качеству монтажных и сварочных работ для БН-600 оказались на порядок выше достигнутых ранее, и коллективу монтажников пришлось срочно переобучать персонал и осваивать новые технологии. Так в 1972 году при сборке корпуса реактора из аустенитных сталей на контроле просвечиванием крупных сварных швов впервые был применен бетатрон.

Кроме того, при монтаже внутрикорпусных устройств реактора БН-600 предъявлялись особые требования по чистоте, велась регистрация всех вносимых и выносимых деталей из внутриреакторного пространства. Это было обусловлено невозможностью в дальнейшем промывки реактора и трубопроводов с теплоносителем-натрием.

Большую роль в разработке технологии монтажа реактора сыграл Николай Муравьев, которого удалось пригласить на работу из Нижнего Новгорода, где он раньше работал в конструкторском бюро. Он являлся одним из разработчиков проекта реактора БН-600, и к тому времени уже находился на пенсии.

Коллектив монтажников успешно справился с поставленными задачами по монтажу блока на быстрых нейтронах. Заливка реактора натрием показала, что чистота контура была выдержана даже выше требуемой, так как температура застывания натрия, которая зависит в жидком металле от наличия посторонних загрязнений и окислов, оказалась ниже достигнутых на монтаже реакторов БН-350, БОР-60 в СССР и АЭС «Феникс» во Франции.

Успех работы монтажных коллективов на сооружении Белоярской АЭС во многом зависел от руководителей. Сначала это был Павел Рябуха, потом пришел молодой энергичный Владимир Невский, затем его сменил Вазген Казаров. В. Невский много сделал для становления коллектива монтажников. В 1963 году его назначили директором Белоярской АЭС, а в дальнейшем он возглавил «Главатомэнерго», где много трудился для становления атомной энергетики страны.

Наконец, 8 апреля 1980 г. состоялся энергетический пуск энергоблока № 3 Белоярской АЭС с реактором на быстрых нейтронах БН-600. Некоторые проектные характеристики БН-600:

  • электрическая мощность – 600 МВт;
  • тепловая мощность – 1470 МВт;
  • температура пара – 505 о С;
  • давление пара – 13,7 МПа;
  • термодинамический КПД брутто – 40,59 %.

Следует специально остановиться на опыте обращения с натрием в качестве теплоносителя. Он имеет неплохие теплофизические и удовлетворительные ядерно-физические свойства, хорошо совместим с нержавеющими сталями, двуокисью урана и плутония. Наконец, он не дефицитен и относительно недорог. Однако он весьма химически активен, из-за чего его применение потребовало решения, по крайней мере, двух серьезных задач: сведения к минимуму вероятности течи натрия из контуров циркуляции и межконтурных течей в парогенераторах и обеспечения эффективной локализации и прекращения горения натрия в случае го утечки.

Первая задача в целом довольно успешно была решена в стадии разработки проектов оборудования и трубопроводов. Весьма удачной оказалась интегральная компоновка реактора, при которой все основное оборудование и трубопроводы 1-го контура с радиоактивным натрием были «спрятаны» внутри корпуса реактора, и поэтому его утечка в принципе оказалась возможной только из немногочисленных вспомогательных систем.

И хотя БН-600 сегодня является самым крупным энергоблоком с реактором на быстрых нейтронах в мире, Белоярская АЭС не входит в число атомных станций с большой установленной мощностью. Ее отличия и достоинства определяются новизной и уникальностью производства, его целей, технологии и оборудования. Все реакторные установки БелАЭС были предназначены для опытно-промышленного подтверждения или отрицания заложенных проектировщиками и конструкторами технических идей и решений, исследования технологических режимов, конструкционных материалов, тепловыделяющих элементов, управляющих и защитных систем.

Все три энергоблока не имеют прямых аналогов ни у нас в стране, ни за рубежом. В них были воплощены многие из идей перспективного развития ядерной энергетики:

  • сооружены и освоены энергоблоки с канальными водографитовыми реакторами промышленных масштабов;
  • применены серийные турбоустановки высоких параметров с КПД теплосилового цикла от 36 до 42 %, чего не имеет ни одна АЭС в мире;
  • применены ТВС, конструкция которых исключает возможность попаданий осколочной активности в теплоноситель даже при разрушении твэлов;
  • в первом контуре реактора 2-го блока применены углеродистые стали;
  • в значительной мере освоена технология применения и обращения с жидкометаллическим теплоносителем;

Белоярской АЭС первой из атомных электростанций России столкнулась на практике с необходимостью решения задачи вывода из эксплуатации отработавших ресурс реакторных установок. Развитие этого весьма актуального для всей атомной энергетики направления деятельности из-за отсутствия организационно-нормативной документальной базы и нерешенности вопроса финансового обеспечения имело длительный инкубационный период.

Более чем 50-летний период эксплуатации Белоярской АЭС имеет три достаточно выраженных этапа, каждому из которых были присущи свои направлений деятельности, специфические трудности ее осуществления, успехи и разочарования.

Первый этап (с 1964 года до середины 70-х гг.) был всецело связан с пуском, освоением и достижением проектного уровня мощности энергоблоков 1-й очереди, множеством реконструктивных работ и решением проблем, связанных с несовершенством проектов блоков, технологических режимов и обеспечением устойчивой работы топливных каналов. Все это потребовало от коллектива станции огромных физических и интеллектуальных усилий, которые, к сожалению, не увенчались уверенностью в правильности и перспективности выбора уран-графитовых реакторов с ядерным перегревом пара для дальнейшего развития атомной энергетики. Однако наиболее существенная часть накопленного опыта эксплуатации 1-й очереди была учтена проектировщиками и конструкторами при создании уран-графитовых реакторов последующего поколения.

Начало 70-х годов связано с выбором для дальнейшего развития атомной энергетики страны нового направления – реакторных установок на быстрых нейтронах с последующей перспективой строительства нескольких энергоблоков с реакторами-размножителями на смешанном уран-плутониевом топливе. При определении места строительства первого опытно-промышленного блока на быстрых нейтронах выбор пал на Белоярскую АЭС. Существенное влияние на этот выбор оказало признание способностей коллективов строителей, монтажников и персонала станции должным образом построить этот уникальный энергоблок и в дальнейшем обеспечить его надежную эксплуатацию.

Это решение обозначило второй этап в развитии Белоярской АЭС, которым большей своей частью был завершен с решением Государственной комиссии о приемке законченного строительства энергоблока с реактором БН-600 с редко применяемой в практике оценкой «отлично».

Обеспечение качественного выполнения работ этого этапа было поручено лучшим специалистам как у подрядчиков по строительству и монтажу, так и из состава эксплуатационного персонала станции. Персонал станции приобрел большой опыт в наладке и освоении оборудования АЭС, что было активно и плодотворно использовано в ходе пусконаладочных работ на Чернобыльской и Курской АЭС. Особо следует сказать о Билибинской АЭС, на которой кроме пуско-наладочных работ был выполнен глубокий анализ проекта, на базе которого был внесен ряд значительных усовершенствований.

С пуском в эксплуатацию третьего блока начался третий этап существования станции, продолжающийся уже более 35 лет. Целями этого этапа было достижение проектных показателей блока, подтверждение практикой жизнеспособности конструктивных решений и приобретение опыта эксплуатации для последующего учета в проекте серийного блока с реактором-размножителем. Все эти цели к настоящему времени успешно достигнуты.

Концепции обеспечения безопасности, заложенные в проекте блока, в целом подтвердились. Так как точка кипения натрия почти на 300 о С превышает его рабочую температуру, реактор БН-600 работает почти без давления в корпусе реактора, который стало возможным изготовить из высокопластичной стали. Это практически исключает возможность возникновения быстроразвивающихся трещин. А трехконтурная схема передачи тепла от активной зоны реактора с увеличением давления в каждом последующем контуре полностью исключает возможность попадания радиоактивного натрия 1-го контура во второй (не радиоактивный) и тем более – в пароводяной третий контур.

Подтверждением достигнутого высокого уровня безопасности и надежности БН-600 является выполненный после аварии на Чернобыльской АЭС анализ безопасности, который не выявил необходимости каких-либо технических усовершенствований срочного характера. Статистика срабатывания аварийных защит, аварийных отключений, неплановых снижений рабочей мощности и других отказов показывает, что реактор БН-6ОО находится, по крайней мере, в числе 25 % лучших ядерных блоков мира.

По итогам ежегодного конкурса Белоярская АЭС в 1994, 1995, 1997 и 2001 гг. удостаивалась звания «Лучшая АЭС России».

В предпусковой стадии находится энергоблок № 4 с реактором на быстрых нейтронах БН-800. Новый 4-й энергоблок с реактором БН-800 мощностью 880 МВт 27 июня 2014 года был выведен на минимальный контролируемый уровень мощности. Энергоблок призван существенно расширить топливную базу атомной энергетики и минимизировать радиоактивные отходы за счёт организации замкнутого ядерно-топливного цикла.

Рассматривается возможность дальнейшего расширения Белоярской АЭС энергоблоком № 5 с быстрым реактором мощностью 1200 МВт – головного коммерческого энергоблока для серийного строительства.

Ядерные энергетические установки используются на атомных электрических станциях, на спутниках Земли, на крупном морском транспорте, основным элементом которых является ядерный реактор.

Ядерным реактором называется устройство, в котором осуществляется управляемая цепная реакция деления тяжелых ядер, сопровождающаяся выделением энергии. Как уже отмечалось ранее, условием осуществления самоподдерживающейся цепной ядерной реакции является наличие достаточного количества вторичных нейтронов, возникающих в процессе деления тяжелого ядра на более легкие ядра (осколки) и имеющих возможность участвовать в дальнейшем процессе деления тяжелых ядер.

Основными частями ядерного реактора любого типа являются:

1) активная зона , где находится ядерное топливо, протекает цепная реакция деления ядер и выделяется энергия;

2) отражатель нейтронов , который окружает активную зону и способствует уменьшению утечки нейтронов из активной зоны путем их отражения обратно в зону. Материалы отражения должны обладать малой вероятностью захвата нейтронов, но большой вероятностью их упругого рассеивания;

3) теплоноситель – используется для отвода тепла из активной зоны;

4) система управления и регулирования цепной реакции ;

5) система биологической защиты (радиационной защиты), предохраняющая обслуживающий персонал от вредного действия ионизирующего излучения.

В ядерных реакторах на медленных нейтронах активная зона, кроме ядерного топлива, содержит замедлитель быстрых нейтронов, образующихся при цепной реакции деления атомных ядер. Применяют замедлители (графит), а также органические жидкости и воду, которые одновременно могут служить и теплоносителем. Если замедлителя в активной зоне нет, то основная часть деления ядер происходит под влиянием быстрых нейтронов с энергией больше 10 кэВ. Реактор без замедлителя – реактор на быстрых нейтронах – может стать критическим лишь при использовании природного урана, обогащенного изотопом U до концентрации около 10%.

В активной зоне реактора на медленных нейтронах расположены тепловыделяющие элементы, содержащие смесь U и U и замедлитель, в котором нейтроны замедляются до энергии около 1 эВ. Тепловыделяющие элементы (ТВЭЛы) представляют собой блоки из делящегося материала, заключенные в герметическую оболочку, слабо поглощающую нейтроны. За счет энергии деления тепловыделяющие элементы разогреваются и отражают энергию теплоносителю, который циркулирует в каналах.

К ТВЭЛам предъявляются высокие технические требования: простота конструкции; механическая устойчивость и прочность в потоке теплоносителя, обеспечивающая сохранение размеров и герметичности; малое поглощение нейтронов конструкционным материалом ТВЭЛа и минимум конструкционного материала в активной зоне; отсутствие взаимодействия ядерного топлива и продуктов деления с оболочкой ТВЭЛов, теплоносителем и замедлителем при рабочих температурах. Геометрическая форма ТВЭЛа должна обеспечить требуемое соотношение площади поверхности и объема и максимальную интенсивность отвода теплоты теплоносителем от всей поверхности ТВЭЛа, а также гарантировать большую глубину выгорания ядерного топлива и высокую степень удержания продуктов деления. ТВЭЛы должны обладать радиационной стойкостью, простотой и экономичностью регенерации ядерного топлива и низкой стоимостью, иметь требуемые размеры и конструкцию, обеспечивающие возможность быстрого проведения перегрузочных операций.


В целях безопасности надежная герметичность оболочек ТВЭЛов должна сохраняться в течение всего срока работы активной зоны
(3–5 лет) и последующего хранения отработавших ТВЭЛов до отправки на переработку (1–3 года). При проектировании активной зоны необходимо заранее установить и обосновать допустимые пределы повреждения ТВЭЛов (количество и степень повреждения). Активная зона проектируется таким образом, чтобы при работе на протяжении всего его расчетного срока службы не превышались установленные пределы повреждения ТВЭЛов. Выполнение указанных требований обеспечивается конструкцией активной зоны, качеством теплоносителя, характеристиками и надежностью системы теплоотвода. В процессе эксплуатации возможно нарушение герметичности оболочек отдельных ТВЭЛов. Различают два вида таких нарушений: образование микротрещин, через которые газообразные продукты деления выходят из ТВЭЛа в теплоноситель (дефект типа газовой плотности); возникновение дефектов, при которых возможен прямой контакт топлива с теплоносителем.

Управление цепной реакцией осуществляется специальными управляющими стержнями, изготовленными из материалов, сильно поглощающих нейтроны (например, бор, кадмий). Изменяя количество и глубину погружения управляющих стержней, можно регулировать нейтронные потоки, а следовательно, интенсивность цепной реакции и выработку энергии.

В настоящее время разработано большое количество различных моделей ядерных реакторов, которые различаются по виду ядерного топлива (уран, плутоний), по химическому составу ядерного топлива (уран, диоксид урана), по виду теплоносителя (вода, тяжелая вода, органические растворители и другие), по виду замедлителя (графит, вода, бериллий).

Реакторы, в которых деление ядер производится в основном нейтронами с энергией больше 0,5 МэВ, называются реакторами на быстрых нейтронах . Реакторы, в которых большинство делений происходит в результате поглощения ядрами делящихся изотопов промежуточных нейтронов, называются реакторами на промежуточных (резонансных) нейтронах .

Наиболее распространенными на АЭС являются реакторы большой мощности канальные (РБМК) и (ВВЭР).

Активная зона РБМК диаметром 11,8 м и высотой 7 м представляет собой цилиндрическую кладку, состоящую из графитовых блоков – замедлитель. В каждого блоке имеется отверстие для технологического канала (всего 1700).

В каждом канале установлено два ТВЭЛа, имеющих форму полых трубок диаметром 13,5 мм и длиной 3,5 м, стенки которых толщиной 0,9 мм выполнены из циркониевого сплава. ТВЭЛы заполнены таблетками из диоксида урана, обогащенного до 2% U. Общая масса топлива в активной зоне РБМК составляет 190 т. В процессе работы реактора ТВЭЛы охлаждаются проходящими по технологическим каналам потоками теплоносителя (вода).

Принципиальная схема реактора РБМК-1000 показана на рис. 7.

Рис. 7. Реактор большой мощности канальный на тепловых нейтронах

1 - турбогенератор; 2 - стержни управления; 3 - барабаны-сепараторы;

4 - конденсаторы; 5 – графитовый замедлитель; 6 – активная зона;

7 - твэлы; 8 – защитная оболочка из бетона

Для управления цепной ядерной реакцией, происходящей в ТВЭЛах, в специальные каналы вводятся регулирующие и управляющие стержни, выполненные из кадмия или бора, которые хорошо поглощают нейтроны. Стержни свободно перемещаются по специальным каналам. Глубина погружения регулирующего стержня определяет степень поглощения нейтронов. По периферии активной зоны расположен слой отражателя нейтронов – те же графитовые блоки, но без каналов.

Графитовая кладка окружена цилиндрическим стальным баком с водой, который предназначен для биологической защиты от нейтронов и гамма-излучений. Кроме того, реактор размещается в бетонной шахте размером 21,6´21,6´25,5 м.

Таким образом, основными элементами РБМК являются тепловыделяющие элементы, заполненные ядерным топливом, заменитель и отражатель нейтронов, теплоноситель и регулирующие стержни, служащие для управления развитием ядерной реакции деления.

Принцип работы АЭС с реактором типа РБМК состоит в следующем. Появляющиеся в результате деления ядер U вторичные быстрые нейтроны выходят из ТВЭЛов и попадают в графитовый замедлитель. В результате прохождения по замедлителю они теряют значительную часть своей энергии и, уже являясь тепловыми, вновь попадают в один из соседних ТВЭЛов и участвуют в дальнейшем процессе деления ядер U. Энергия цепной ядерной реакции выделяется в виде кинетической энергии «осколков» (80%), вторичных нейтронов, альфа-, бета-частиц и гамма-квантов, в результате чего происходит разогрев ТВЭЛов и графитовой кладки замедлителя. Теплоноситель, в качестве которого используется вода, двигаясь в технологических каналах снизу вверх под давлением около 7 МПа, охлаждает активную зону реактора. В результате происходит нагрев теплоносителя до температуры 285°С на выходе из реактора.

Далее пароводяная смесь транспортируется по трубопроводам в сепаратор, служащий для отделения воды от пара. Отсепарированный насыщенный пар под давлением попадает на лопасти турбины, связанной с генератором электрического тока.

Отработанный пар направляется в технологический конденсатор, конденсируется, смешивается с теплоносителем, поступающим из сепаратора, и под давлением, создаваемым циркуляционным насосом, вновь поступает в технологические каналы активной зоны реактора.

Преимущество таких реакторов являются возможность замены ТВЭЛов без остановки реактора и возможность поканального контроля состояния реактора. К недостаткам реакторов РМБК следует отнести низкую стабильность работы на малых уровнях мощности, недостаточное быстродействие системы управления защиты и использование одноконтурной схемы, в которой имеется реальная возможность радиоактивного загрязнения турбогенератора.

Среди реакторов, работающих на тепловых нейтронах, наиболее широкое распространение во многих странах мира получили водо-водяные энергетические реакторы .

Реакторы этого типа состоят из следующих основных конструктивных элементов: корпуса с крышкой, в котором размещаются ТВЭЛы, собранные в кассеты; органы управления и защиты, тепловой экран, выполняющий одновременно роль отражателя нейтронов и биологической защиты (рис. 8).

Корпус ВВЭР представляет собой вертикальный толстостенный цилиндр из высокопрочной легированной стали высотой 12–25 м и диаметром 3–8 м (в зависимости от мощности реактора). Сверху корпус реактора герметично закрывается массивной стальной сферической крышкой.

Рис. 8. Принципиальная схема АЭС ВВЭР-1000:

1 – тепловой экран; 2 - корпус; 3 – крышка; 4 - трубопроводы первого контура;

5 - трубопроводы второго контура; 6 - паровая турбина; 7 - генератор;

8 - технологический конденсатор; 9 , 11 – циркуляционные насосы;

10 - парогенератор; 12 - твэлы

Корпус реактора установлен в бетонной оболочке, являющейся одним из барьеров радиационной защиты. Принцип работы АЭС с серийным водо-водяным реактором электрической мощностью 440 МВт (ВВЭР-440) состоит в следующем. Теплоотвод от активной зоны ядерного реактора осуществляется по двухконтурной схеме. Теплоноситель (вода) первого контура, имеющий температуру 270°С, по трубопроводу подводится к активной зоне реактора под высоким давлением порядка 12,5 МПа, поддерживаемым циркуляционным насосом. Проходя по активной зоне, теплоноситель нагревается до 300°С (высокое давление в контуре не позволяет воде закипеть) и дальше поступает в парогенератор.

В парогенераторе теплоноситель первого контура отдает свое тепло так называемой питательной воде второго контура, находящейся под более низким давлением (приблизительно 4,4 МПа). Поэтому вода второго контура закипает и превращается в нерадиоактивный пар, который по пароводу подается на паровую турбину, связанную с генератором электрического тока. Отработанный пар охлаждается в технологическом конденсаторе, и под действием питательного насоса конденсат вновь поступает в парогенератор. Двухконтурная схема теплоотвода обеспечивает радиационную безопасность АЭС.

Перспективы развития ядерной энергетики в настоящее время связывают со строительством реакторов на быстрых нейтронах. Также реакторы наряду с выработкой электроэнергии позволяют осуществлять расширенное воспроизводство ядерного топлива, вовлекая в топливный цикл не только делящиеся тепловыми нейтронами U или Pu, но и U и Th (его содержание в земной коре примерно в 4 раза выше, чем природного урана).

В активной зоне реактора на быстрых нейтронах размещаются ТВЭЛы с высокообогащенным топливом. Активная зона окружается зоной воспроизводства, состоящей из ТВЭЛов, содержащих топливное сырье (обедненный уран, торий). Вылетающие из активной зоны нейтроны захватываются в зоне воспроизводства ядрами топливного сырья, в результате образуется новое ядерное топливо. Особым достоинством быстрых реакторов является возможность организации в них расширенного воспроизводства ядерного топлива, т. е. одновременно с выработкой энергии можно производить вместо выгоревшего ядерного топлива новое. Для быстрых реакторов не требуется замедлитель, а теплоноситель не должен замедлять нейтроны.

В активной зоне реактора на быстрых нейтронах отсутствует замедлитель, в связи с этим объем активной зоны реактора во много раз меньше, чем в РБМК или ВВЭР, и составляет примерно 2 м 3 . В качестве ядерного топлива в реакторах используется искусственно полученный Pu или высокообогащенный (более 20%) уран.

В активной зоне реактора БН-600 размещается 370 топливных сборок, в каждой из которых содержится по 127 ТВЭЛов и 27 стержней системы управления и аварийной защиты.

Для отвода тепловой энергии в активной зоне реактора БН-600 используется трехконтурная технологическая схема (рис. 9).

В первом и втором контурах в качестве теплоносителя используется жидкий натрий, температура плавления которого составляет 98°С, он обладает малой поглощающей и замедляющей способностью нейтронов.

Жидкий натрий первого контура на выходе из реактора имеет температуру 550°С и поступает в промежуточный теплообменник. Там он отдает теплоту теплоносителю второго контура, в качестве которого тоже используется жидкий натрий. Теплоноситель второго контура поступает в парогенератор, где происходит превращение в пар воды, являющейся теплоносителем третьего циркуляционного контура. Вырабатываемый в парогенераторе пар под давлением 14 МПа поступает в турбину электрогенератора. Отработанный пар после охлаждения в технологическом конденсаторе направляется насосом опять в парогенератор. Таким образом, схему теплоотвода на АЭС с реактором БН-600 составляют один радиоактивный и два нерадиоактивных контура. Время работы генератора БН-600 между перегрузками топлива составляет 150 суток.

Рис. 9. Технологическая схема АЭС с реактором на быстрых нейтронах:

1 – твэлы активной зоны; 2 – твэлы зоны воспроизводства; 3 – корпус реактора;

4 – бетонный корпус реактора; 5 – теплоноситель первого контура;
6 – теплоноситель второго контура; 7 – теплоноситель третьего контура;

8 – паровая турбина; 9 – генератор; 10 – технологический конденсатор;

11 – парогенератор; 12 – промежуточный теплообменник;

13 – циркуляционный насос

При эксплуатации АЭС, кроме проблем, связанных с захоро-нением высокорадиоактивных отходов ядерный топливный цикл (ЯТЦ), возникают дополнительные проблемы, которые обусловлены сроком службы ядерных реакторов (20–40 лет). После окончания этого срока службы реакторы необходимо выводить из эксплуатации, а из активной зоны их необходимо извлекать ядерное топливо, теплоноситель. Сам реактор консервируют или демонтируют. Опыт демонтажа отработанных ядерных реакторов в мире очень небольшой.


1. Общие сведения об атоме и атомном ядре. Явление радиоактивности.

2. Основной закон радиоактивного распада. Активность и единицы ее измерения.

3. Деление тяжелых ядер и цепная реакция деления.

4. Какой принцип работы ядерного реактора и их характеристики?

5. Приведите основные характеристики реакторов ВВЭР-1000 и РБМК-1000. В чем их отличие?

6. Основные характеристики реакторов на быстрых нейтронах БН-600.

ЛЕКЦИЯ 4. ИОНИЗИРУЮЩИЕ ИЗЛУЧЕНИЯ,
ИХ ХАРАКТЕРИСТИКИ И ВЗАИМОДЕЙСТВИЕ

Слайд 11. В активной зоне реактора на быстрых нейтронах размещаются твэлы с высокообогащенным 235U топливом. Активная зона окружается зоной воспроизводства, состоящей

из твэлов, содержащих топливное сырье (обедненный 228U или 232Th). Вылетающие из активной зоны нейтроны захватываются в зоне воспроизводства ядрами топливного сырья, в результате образуется новое ядерное топливо. Достоинством быстрых реакторов является возможность организации в них расширенного воспроизводство ядерного топлива, т.е. одновременно с выработкой энергии производить вместо выгоревшего ядерного топлива новое. Для быстрых реакторов не требуется замедлитель, а теплоноситель не должен замедлять нейтроны.

Основное назначение реактора на быстрых нейтронах - производство оружейного плутония (и некоторых других делящихся актинидов), компонентов атомного оружия. Но подобные реакторы находят применение и в сфере энергетики, в частности, для обеспечения расширенного воспроизводства делящегося плутония 239Pu из 238U с целью сжигания всего или значительной части природного урана, а также имеющихся запасов обедненного урана. При развитии энергетики реакторов на быстрых нейтронах может быть решена задача самообеспечения ядерной энергетики топливом.

Слайд 12. Реактор-размножитель, ядерный реактор, в котором «сжигание» ядерного топлива сопровождается расширенным воспроизводством вторичного топлива. В реакторе-размножителе, нейтроны, освобождающиеся в процессе деления ядерного топлива (например, 235U), взаимодействуют с ядрами помещенного в реактор сырьевого материала (например,238U), в результате образуется вторичное ядерное топливо (239Pu). В реакторе-размножителе типа бридер воспроизводимое и сжигаемое топливо представляют собой изотопы одного и того же химического элемента (например, сжигается 235U, воспроизводится 233U), в реакторе типа реактор - конвертер - изотопы разных химических элементов (например, сжигается 235U, воспроизводится 239Pu).

В быстрых реакторах ядерным горючим является обогащенная смесь, содержащая не менее 15% изотопа 235U . Такой реактор обеспечивает расширенное воспроизводство ядерного горючего (в нем наряду с исчезновением атомов, способных к делению, происходит регенерация некоторых из них (например, образование 239Pu)). Основное число делений вызывается быстрыми нейтронами, причем каждый акт деления сопровождается появлением большого (по сравнению с делением тепловыми нейтронами) числа нейтронов, которые при захвате ядрами 238U превращает их (посредством двух последовательных в--распадов) в ядра 239Pu, т.е. нового ядерного топлива. Это значит, что, например, на 100 разделившихся ядер горючего (235U) в реакторах на быстрых нейтронах образуется 150 ядер 239Pu, способных к делению. (Коэффициент воспроизводства таких реакторов достигает 1,5, т.е. на 1 кг 235U получается до 1,5 кг Pu). 239Pu можно использовать в реакторе как делящийся элемент.

С точки зрения развития мировой энергетики, преимущество реактора на быстрых нейтронах (БН) состоит в том, что он позволяет использовать как топливо изотопы тяжелых элементов, не способные к делению в реакторах на тепловых нейтронах. В топливный цикл могут быть вовлечены запасы 238U и 232Th, которых в природе значительно больше, чем 235U - основного горючего для реакторов на тепловых нейтронах. В том числе может быть использован и так называемый «отвальный уран», оставшийся после обогащения ядерного горючего 235U. Отметим, что в обычных реакторах также образуется плутоний, но в гораздо меньших количествах.

Слайд 13. БН - ядерный реактор, на быстрых нейтронах. Корпусной реактор-размножитель. Теплоносителем первого и второго контуров обычно является натрий. Теплоноситель третьего контура - вода и пар. В быстрых реакторах замедлитель отсутствует.

К достоинствам быстрых реакторов можно отнести большую степень выгорания топлива (т.е. больший срок кампании), а к недостаткам - дороговизну, из-за невозможности использования простейшего теплоносителя - воды, конструкционной сложности, высоких капитальных затрат и высокой стоимости высокообогащенного топлива.

Высокообогащенный уран - уран с содержанием изотопа урана-235 по массе равным или более 20 %. Для обеспечения высокой концентрации ядерного топлива необходимо достижение максимального тепловыделения на единицу объема активной зоны. Тепловыделение реактора на быстрых нейтронах в десять-пятнадцать раз превосходит тепловыделение реакторов на медленных нейтронах. Теплосъём в таком реакторе можно осуществить только с помощью жидкометаллических теплоносителей, например натрия, калия или энергоемких газовых теплоносителей, обладающих наилучшими теплотехническими и теплофизическими характеристиками, таких как гелий и диссоциирующие газы. Обычно используются жидкие металлы, например, расплав натрия (температура плавления натрия 98 °C). К недостаткам натрия следует отнести его высокую химическую активность по отношению к воде, воздуху и пожароопасность. Температура теплоносителя на входе в реактор - 370 оС, а на выходе - 550, что в десять раз выше аналогичных показателей, скажем, для ВВЭР - там температура воды на входе - 270 градусов, а на выходе - 293.

Ядерные реакторы на быстрых нейтронах

Первая в мире атомная электростанция (АЭС), построенная в городе Обнинске под Москвой, дала ток в июне 1954 года. Мощность ее была весьма скромной – 5 МВт. Однако она сыграла роль экспериментальной установки, где накапливался опыт эксплуатации будущих крупных АЭС. Впервые была доказана возможность производства электрической энергии на основе расщепления ядер урана, а не за счет сжигания органического топлива и не за счет гидравлической энергии.

АЭС использует ядра тяжелых элементов – урана и плутония. При делении ядер выделяется энергия – она и «работает» в атомных электростанциях. Но можно использовать только ядра, имеющие определенную массу – ядра изотопов. В атомных ядрах изотопов содержится одинаковое число протонов и разное – нейтронов, из-за чего ядра разных изотопов одного и того же элемента имеют разную массу. У урана, например, 15 изотопов, но в ядерных реакциях участвует только уран-235.

Реакция деления протекает следующим образом. Ядро урана самопроизвольно распадается на несколько осколков; среди них есть частицы высокой энергии – нейтроны. В среднем на каждые 10 распадов приходится 25 нейтронов. Они попадают в ядра соседних атомов и разбивают их, высвобождая нейтроны и огромное количество тепла. При делении грамм урана выделяется столько же тепла, сколько при сгорании трех тонн каменного угля.

Пространство в реакторе, где находится ядерное топливо, называют активной зоной. Здесь идет деление атомных ядер урана и выделяется тепловая энергия. Чтобы предохранить обслуживающий персонал от вредного излучения, сопровождающего цепную реакцию, стенки реактора делают достаточно толстыми. Скоростью цепной ядерной реакции управляют регулирующие стержни из вещества, поглощающего нейтроны (чаще всего это бор или кадмий). Чем глубже опускают стержни в активную зону, тем больше нейтронов они поглощают, тем меньше нейтронов участвует в реакции и меньше выделяется тепла. И наоборот, когда регулирующие стержни поднимают из активной зоны, количество нейтронов, участвующих в реакции, возрастает, все большее число атомов урана делится, освобождая скрытую в них тепловую энергию.

На случай, если возникнет перегрев активной зоны, предусмотрена аварийная остановка ядерного реактора. Аварийные стержни быстро падают в активную зону, интенсивно поглощают нейтроны, цепная реакция замедляется или прекращается.

Тепло из ядерного реактора выводят с помощью жидкого или газообразного теплоносителя, который прокачивают насосами через активную зону. Теплоносителем может быть вода, металлический натрий или газообразные вещества. Он отбирает у ядерного топлива тепло и передает его в теплообменник. Эта замкнутая система с теплоносителем называется первым контуром. В теплообменнике тепло первого контура нагревает до кипения воду второго контура. Образующийся пар направляют в турбину или используют для теплофикации промышленных и жилых зданий.

До катастрофы на АЭС в Чернобыле советские ученые с уверенностью говорили о том, что в ближайшие годы в атомной энергетике будут широко использовать два основных типа реакторов. Один из них, ВВЭР – водо-водяной энергетический реактор, а другой – РБМК – реактор большой мощности, канальный. Оба типа относятся к реакторам на медленных (тепловых) нейтронах.

В водо-водяном реакторе активная зона заключена в огромный, диаметром 4 и высотой 15 метров, стальной корпус-цилиндр с толстыми стенами и массивной крышкой. Внутри корпуса давление достигает 160 атмосфер. Теплоносителем, отбирающим тепло в зоне реакции, служит вода, которую прокачивают насосами. Эта же вода служит и замедлителем нейтронов. В парогенераторе она нагревает и превращает в пар воду второго контура. Пар поступает в турбину и вращает ее. И первый и второй контуры – замкнутые.

Раз в полгода выгоревшее ядерное горючее заменяют на свежее, для чего надо реактор остановить и охладить. В России по этой схеме работают Нововоронежская, Кольская и другие АЭС.

В РБМК замедлителем служит графит, а теплоносителем – вода. Пар для турбины получается непосредственно в реакторе и туда же возвращается после использования в турбине. Топливо в реакторе можно заменять постепенно, не останавливая и не расхолаживая его.

Первая в мире Обнинская АЭС относится именно к этому типу. По той же схеме построены Ленинградская, Чернобыльская, Курская, Смоленская станции большой мощности.

Одной из серьезных проблем АЭС является утилизация ядерных отходов. Во Франции, к примеру, этим занимается крупная фирма «Кожема». Топливо, содержащее уран и плутоний, с большой осторожностью, в специальных транспортных контейнерах – герметичных и охлаждаемых – направляется на переработку, а отходы – на остекловывание и захоронение.

«Нам показали отдельные этапы переработки топлива, привезенного с АЭС с величайшей осторожностью, – пишет в журнале «Наука и жизнь» И. Лаговский. – Разгрузочные автоматы, камера разгрузки. Заглянуть в нее можно через окно. Толщина стекла в окне 1 метр 20 сантиметров. У окна манипулятор. Невообразимая чистота вокруг. Белые комбинезоны. Мягкий свет, искусственные пальмы и розы. Теплица с настоящими растениями для отдыха после работы в зоне. Шкафы с контрольной аппаратурой МАГАТЭ – международного агентства по атомной энергии. Операторский зал – два полукруга с дисплеями, – отсюда управляют разгрузкой, резанием, растворением, остекловыванием. Все операции, все перемещения контейнера последовательно отражаются на дисплеях у операторов. Сами залы работ с материалами высокой активности находятся довольно далеко, на другой стороне улицы.

Остеклованные отходы невелики по объему. Их заключают в стальные контейнеры и хранят в вентилируемых шахтах, пока не повезут на место окончательного захоронения…

Сами контейнеры являют собой произведение инженерного искусства, целью которого было соорудить нечто такое, что невозможно разрушить. Железнодорожные платформы, груженные контейнерами, пускали под откос, таранили на полном ходу встречными поездами, устраивали другие мыслимые и немыслимые аварии при перевозке – контейнеры выдерживали все».

После чернобыльской катастрофы 1986 года ученые стали сомневаться в безопасности эксплуатации АЭС и, в особенности, реакторов типа РБМК. Тип ВВЭР в этом отношении более благополучен: авария на американской станции Тримайл-айленд в 1979 году, где частично расплавилась активная зона реактора, радиоактивность не вышла за пределы корпуса. В пользу ВВЭР говорит долгая безаварийная эксплуатация японских АЭС.

И, тем не менее, есть еще одно направление, которое, по мнению ученых, способно обеспечить человечество теплом и светом на ближайшее тысячелетие. Имеются в виду реакторы на быстрых нейтронах, или реакторы-размножители. В них используется уран-238, но для получения не энергии, а горючего. Этот изотоп хорошо поглощает быстрые нейтроны и превращается в другой элемент – плутоний-239. Реакторы на быстрых нейтронах очень компактны: им не нужны ни замедлители, ни поглотители – их роль играет уран-238. Называются они реакторами-размножителями, или бридерами (от английского слова «breed» – размножать). Воспроизведение ядерного горючего позволяет в десятки раз полнее использовать уран, поэтому реакторы на быстрых нейтронах считаются одним из перспективных направлений атомной энергетики.

В реакторах такого типа, кроме тепла, нарабатывается еще и вторичное ядерное топливо, которое можно использовать в дальнейшем. Здесь ни в первом, ни во втором контурах нет высокого давления. Теплоноситель – жидкий натрий. Он циркулирует в первом контуре, нагревается сам и передает тепло натрию второго контура, а тот, в свою очередь, нагревает воду в пароводяном контуре, превращая ее в пар. Теплообменники изолированы от реактора.

Одна из таких перспективных станций – ей дали название Монзю – была построена в районе Шираки на побережье Японского моря в курортной зоне в четырехстах километрах к западу от столицы.

«Для Японии, – говорит руководитель отдела ядерной корпорации Кансаи К. Такеноучи, – использование реакторов-размножителей означает возможность уменьшить зависимость от привозного природного урана за счет многократного использования плутония. Поэтому понятно наше стремление к разработке и совершенствованию "быстрых реакторов", достижению технического уровня, способного выдержать конкуренцию с современными АЭС в отношении экономичности и безопасности.

Развитие реакторов-размножителей должно стать основной программой выработки электроэнергии в ближайшем будущем».

Строительство реактора Монзю – уже вторая стадия освоения реакторов на быстрых нейтронах в Японии. Первой было проектирование и постройка экспериментального реактора Джойо (что по-японски означает «вечный свет») мощностью 50-100 МВт, который начал работать в 1978 году. На нем исследовались поведение топлива, новые конструкционные материалы, узлы.

Проект Монзю стартовал в 1968 году. В октябре 1985 года начали сооружать станцию – рыть котлован. В процессе освоения площадки 2 миллиона 300 тысяч кубометров скального грунта было сброшено в море. Тепловая мощность реактора – 714 МВт. Топливом служит смесь окислов плутония и урана. В активной зоне 19 регулирующих стержней, 198 топливных блоков, в каждом из которых по 169 топливных стержней (тепловыделяющих элементов – ТВЭЛов) диаметром 6,5 миллиметров. Они окружены радиальными топливовоспроизводящими блоками (172 штуки) и блоками нейтронных экранов (316 штук).

Весь реактор собран как матрешка, только разобрать его уже невозможно. Огромный корпус реактора, из нержавеющей стали (диаметр – 7,1 метра, высота – 17,8 метра), помещен в защитный кожух на случай, если при аварии разольется натрий.

«Стальные конструкции камеры реактора, – сообщает в журнале «Наука и жизнь» А Лаговский, – обечайки и стеновые блоки – в качестве защиты заполнены бетоном. Первичные натриевые системы охлаждения вместе с корпусом реактора окружены противоаварийной оболочкой с ребрами жесткости – ее внутренний диаметр 49,5 метра, а высота – 79,4 метра. Эллипсоидное дно этой громады покоится на сплошной бетонной подушке высотой 13,5 метра. Оболочка окружена полутораметровым кольцевым зазором, а далее следует толстый слой (1-1,8 метра) армированного бетона. Купол оболочки также защищен слоем армированного бетона толщиной 0,5 метра.

Вслед за противоаварийной оболочкой устроен еще один защитный корпус – вспомогательный – размером 100 на 115 метров, удовлетворяющий требованиям противосейсмического строительства. Чем не саркофаг?

Во вспомогательном корпусе реактора размещены вторичные системы натриевого охлаждения, пароводяные системы, топливные загрузочно-разгрузочные устройства, резервуар для хранения отработанного топлива. В отдельных помещениях расположены турбогенератор и резервные дизель-генераторы.

Прочность противоаварийной оболочки рассчитана как на избыточное давление в 0,5 атмосферы, так и на вакуум в 0,05 атмосферы. Вакуум может образоваться при выгорании кислорода в кольцевом зазоре, если разольется жидкий натрий. Все бетонные поверхности, которые могут войти в контакт с разлившимся натрием, сплошь облицованы стальными листами, достаточно толстыми для того, чтобы выдержать тепловые напряжения. Так защищаются на тот случай, которого вообще может и не произойти, поскольку должна быть гарантия и на трубопроводы, и на все другие части атомной установки».

Из книги Непознанное, отвергнутое или сокрытое автора Царева Ирина Борисовна

Из книги Большая Советская Энциклопедия (ПР) автора БСЭ

Из книги Большая Советская Энциклопедия (РЕ) автора БСЭ

Из книги Большая Советская Энциклопедия (ЯД) автора БСЭ

Ядерные боеприпасы Ядерные боеприпасы, боевые части ракет, торпед, авиационные (глубинные) бомбы, артиллерийские выстрелы, фугасы с ядерными зарядами. Предназначены для поражения различных целей, разрушения укреплений, сооружений и других задач. Действие Я. б. основано

Из книги Энциклопедический словарь крылатых слов и выражений автора Серов Вадим Васильевич

Из книги Эксплуатация электрических подстанций и распределительных устройств автора Красник В. В.

Из книги 100 великих тайн Востока [с иллюстрациями] автора Непомнящий Николай Николаевич

Из книги Большая энциклопедия консервирования автора Семикова Надежда Александровна

Из книги Большая энциклопедия техники автора Коллектив авторов

Из книги Бестселлер на миллион. Как написать, издать и раскрутить ваш бестселлер автора Масленников Роман Михайлович

Может собственных Платонов / И быстрых разумов Невтонов / Российская земля рождать Из оды «На день восшествия на престол императрицы Елизаветы» (1747) Михаила Васильевича Ломоносова (1711 - 1765).«Невтон» - старинное произношение имени английского физика и математика Исаака

Из книги автора

Что может собственных Платонов / И быстрых разумом Невтонов / Российская земля рождать Из «Оды на день восшествия на всероссийский престол ее Величества Государыни Императрицы Елисаветы Петровны 1747 года» Михаила Васильевича Ломоносова (1711 - 1765). «Невтон» -

Из книги автора

2.6. Заземление нейтралей трансформаторов. Дугогасящие реакторы для компенсации емкостных токов Электрические сети 35 кВ и ниже работают с изолированной нейтралью обмоток трансформаторов или заземлением через дугогасящие реакторы, сети 110 кВ и выше - с эффективным

Из книги автора

Из книги автора

Из книги автора

Реакторы химические Реакторы химические – устройства, обеспечивающие химические реакции. Различаются по конструкции, условиям протекания реакции, состоянию веществ, которые в реакторе взаимодействуют (их концентрации, давлению, температуре). В зависимости от

Из книги автора

Три раздела для самых быстрых Эта книга небольшая, так задумано специально. Как волшебный пинок! Прочитали – сделали – получили результат.Сейчас будут три раздела для самых активных. Если вы быстро схватываете, вам будет достаточно уже этих пяти страниц, чтобы совершить