А. Интерфероны (ИФН ):

1. Природные ИФН (1 поколение):

2. Рекомбинанатные ИФН (2 поколение):

а) короткого действия:

ИФН a2b: интрон-А

ИФН β: авонекс и др.

(пэгилированные ИФН): пэгинтерферон

Б. Индукторы интерферона (интерфероногены):

1. Синтетические – циклоферон, тилорон, дибазол и др.

2. Природные – ридостин и др.

В. Интерлейкины : рекомбинантный интерлейкин-2 (ронколейкин, альдеслейкин, пролейкин,) , рекомбинантный интерлейкин 1-бета (беталейкин).

Г. Колониестимулирующие факторы (молграмостим и др.)

Пептидные препараты

Препараты тимических пептидов .

Пептидные соединения, вы­рабатываемые вилочковой железой, стимулируют созревание Т-лимфоцитов (тимопоэтины).

При исходно пониженных показателях препараты типических пептидов повышают количество Т-клеток и их функциональную активность.

Родоначальником тимических препаратов первого поколения в России стал Тактивин , представляющий собой комплекс пептидов, экстрагированных из тимуса крупного рогатого скота. К препаратам, содержащим комплекс тимических пептидов, относятся также Тималин, Тимоптин и другие, а к содержащим экстракты тимуса – Тимостимулин и Вилозен .

Препараты пептидов из тимуса крупного рогатого скота тималин, тимостимулин вводят внутримышечно, а тактивин, тимоптин - под кожу в основном при недостаточности клеточного иммунитета:

При Т-иммунодефицитах,

Вирусных инфекциях,

Для профилактики инфекций при лучевой терапии и химиотерапии опухолей.

Клиническая эффективность тимических препаратов первого поколения не вызывает сомнения, но у них есть один недостаток: они представляют собой неразделенную смесь биологически активных пептидов, достаточно трудно поддающихся стандартизации.

Прогресс в области лекарственных средств тимического происхождения шел по линии создания препаратов II и III поколений – синтетических аналогов природных гормонов тимуса или фрагментов этих гормонов, обладающих биологической активностью.

Современный препарат Имунофан – гексапептид, синтетический аналог активного центра тимопоэтина, применяют при иммунодефицитах, опухолях. Препарат стимулирует образование ИЛ-2 иммунокомпетентными клетками, повышает чувствительность лимфоидных кле­ток к этому лимфокину, снижает продукцию ФНО (фактора некроза опухолей), оказывает регулирующее вли­яние на выработку медиаторов иммунитета (воспаления) и иммуноглобулинов.

Препараты пептидов костного мозга

Миелопид получают из культуры клеток костного мозга млекопитающих (телят, свиней). Ме­ханизм действия препарата связан со стимуляцией пролиферации и функциональ­ной активности В- и Т-клеток.



В организме мишенью этого препарата считаются В-лимфоциты. При нарушении иммуно- или гемопоэза введение миелопида ведет к усилению общей митотической активности клеток костного мозга и направлению их дифференцировки в сторону зрелых В-лимфоцитов.

Миелопид применяют в комплексной терапии вторичных иммуно­дефицитных состояний с преимущественным поражением гуморального звена им­мунитета, для профилактики инфекционных осложнений после хирургических вмешательств, травм, перенесенного остеомиелита, при неспецифических легоч­ных заболеваниях, хронических пиодермиях. Побочные эффекты препарата - головокружение, слабость, тошнота, гиперемия и болезненность в месте введения.

Все препараты этой группы противопоказаны беременным, миелопид и имунофан противопоказаны при наличии резус-конфликта матери и плода.

Препараты иммуноглобулинов

Иммуноглобулины человека

а) Иммуноглобулины для внутримышечного введения

Неспецифические: иммуноглобулин человека нормальный

Специфические: иммуноглобулин против гепатита В человека, иммуноглобулин человека антистафилококковый, иммуноглобулин человека противостолбнячный, иммуноглобулин человека против клещевого энцефалита, иммуноглобулин человека против вируса бешенства и др.

б)Иммуноглобулины для внутривенного введения

Неспецифические: иммуноглобулин человека нормальный для внутривенного введения (габриглобин, иммуновенин, интраглобин, хумаглобин)

Специфические: иммуноглобулин против гепатита В человека (неогепатект), пентаглобин (содержит антибактериальные IgM, IgG, IgA), иммуноглобулин против цитомегаловируса (цитотект), иммуноглобулин человека против клещевого энцефалита, антирабический ИГ и др..

в)Иммуноглобулины для перорального применения: иммуноглобулиновый комплексный препарат (КИП) для энтерального применения при острых кишечных инфекциях; антиротавирусный иммуноглобулин для перорального введения.

Гетерологичные иммуноглобулины:

иммуноглобулин антирабический из сыворотки лошади, сыворотка противогангренозная поливалентная лошадиная и др.

Препараты неспецифических иммуноглобулинов применяют при первичных и вторичных иммунодефицитах, препараты специфических иммуноглобулинов – при соответствующих инфекциях (с лечебной или профилактической целью).

Цитокины и препараты на их основе

Регуляция развившегося иммунного ответа осуществляется цитокинами – сложным комплексом эндогенных иммунорегуляторных молекул , которые являются основой для создания большой группы как естественных, так и рекомбинантных иммуномодулируюших препаратов.

Интерфероны (ИФН):

1. Природные ИФН (1 поколение):

Альфафероны: человеческий лейкоцитарный ИФН и др.

Бетафероны: человеческий фибробластный ИФН и др.

2. Рекомбинанатные ИФН (2 поколение):

а) короткого действия:

ИФН a2а: реаферон, виферон и др.

ИФН a2b: интрон-А

ИФН β: авонекс и др.

б) пролонгированного действия (пэгилированные ИФН): пэгинтерферон (ИФН a2b+Полиэтиленгликоль) и др.

Основная направленность действия препаратов ИФН – Т-лимфоциты (естественные киллеры и цитотоксические Т-лимфоциты).

Природные интерфероны получают в культуре клеток лейкоцитов донорс­кой крови (в культуре лимфобластоидных и других клеток) под воздействием вируса-индуктора.

Рекомбинантные интерфероны получают генно-инженерным методом - путем культивирования бактериальных штаммов, содержащих в своем гене­тическом аппарате встроенную рекомбинантную плазмиду гена интерферона человека.

Интерфероны оказывают противовирусное, противоопухолевое и иммуномодулирующее действие.

Как противовирусные средства препараты интерферона наиболее эффективны при лечении герпетических заболеваний глаз (местно в виде капель, субконъюнктивально), простого герпеса с локализацией на коже, слизистых оболочках и гени­талиях, опоясывающего лишая (местно в виде мази на гидрогелевой основе), ос­трого и хронического вирусного гепатита В и С (парентерально, ректально в суппозиториях), при лечении и профилактике гриппа и ОРВИ (интраназально в форме капель). При ВИЧ-инфекции препараты рекомбинантного интерферона нормализуют иммунологические параметры, снижают остроту течения заболева­ния более чем в 50% случаев, вызывают уменьшение уровня виремии и содержа­ния сывороточных маркеров заболевания. При СПИДе проводят комбинирован­ную терапию с азидотимидином.

Противоопухолевое действие препаратов интерферона связано с антипроли-феративным эффектом и стимуляцией активности естественных киллеров. Как противоопухолевые средства применяются ИФН-альфа, ИФН-аль­фа 2а, ИФН-альфа-2b, ИФН-альфа-n1, ИФН-бета.

В качестве иммуномодулятора при рассеянном склерозе применяется ИФН-бета-lb.

Препараты интерферонов вызывают сходные побочные эффекты . Характер­ны - гриппоподобный синдром; изменения со стороны ЦНС: головокружение, нарушение зрения, спутанность сознания, депрессия, бессонница, парестезии, тремор. Со стороны желудочно-кишечного тракта: по­теря аппетита, тошнота; со стороны сердечно-сосудистой системы возможно про­явление симптомов сердечной недостаточности; со стороны мочевыделительной системы - протеинурия; со стороны системы кроветворения - преходящая лей­копения. Также могут возникнуть сыпь, зуд, алопеция, временная импотенция, носовые кровотечения.

Индукторы интерферона (интерфероногены):

1. Синтетические – циклоферон, тилорон, полудан и др.

2. Природные – ридостин и др.

Индукторы интерферона - это препараты, усиливающие синтез эндогенного интерферона. Эти препараты имеют ряд преимуществ по сравнению с рекомбинантными интерферонами. Они не обладают антигенной активностью. Стимули­рованный синтез эндогенного интерферона не вызывает гиперинтерферонемии.

Тилорон (амиксин) относится к низкомолекулярным синтетическим соединениям, является пероральным индуктором интерферона. Обладает широким спектром противовирусной активности в отношении ДНК- и РНК-содержащих вирусов. Как противовирусное и иммуномодулирующее средство применяется для профи­лактики и лечения гриппа, ОРВИ, гепатита А, для лечения вирусных гепатитов, герпеса простого (в том числе урогенитального) и опоясывающего, при комплек­сной терапии хламидийных инфекций, нейровирусных и инфекционно-аллергических заболеваний, при вторичных иммунодефицитах. Препарат хорошо переносится. Возможны диспептические явления, кратковременный озноб, по­вышение общего тонуса, что не требует отмены препарата.

Полудан представляет собой биосинтетический полирибонуклеотидный комплекс полиадениловой и полиуридиловой кислот (в эквимолярных соотно­шениях). Препарат оказывает выраженное ингибирующее влияние на вирусы про­стого герпеса. Применяется в виде глазных капель и инъекций под конъюнктиву. Препарат назначают взрослым для лечения вирусных заболеваний глаз: герпети­ческих и аденовирусных конъюнктивитов, кератоконъюнктивитов, кератитов и кератоиридоциклитов (кератоувеитов), иридоциклитов, хориоретинитов, неври­тов зрительного нерва.

Побочные эффекты возникают редко и проявляются развитием аллергичес­ких реакций: зуд и ощущение инородного тела в глазу.

Циклоферон - низкомолекулярный индуктор интерферона. Оказывает противовирусное, иммуномодулирующее и противовоспалительное действие. Циклоферон эффективен в отношении вирусов клещевого энцефалита, герпеса, цитомегаловируса, ВИЧ и др. Обладает антихламидийным действием. Эффекти­вен при системных заболеваниях соединительной ткани. Установлено радиоза­щитное и противовоспалительное действие препарата.

Арбидол назначают внутрь для профилактики и лечения гриппа и других ОРВИ, а также при герпетических заболеваниях.

Интерлейкины:

рекомбинантный ИЛ-2 (альдеслейкин, пролейкин, ронколейкин) , рекомбинантный ИЛ-1бета (беталейкин ).

Для цитокиновых препаратов естественного происхождения, содержащих достаточно большой набор цитокинов воспаления и первой фазы иммунного ответа, характерно многогранное воздействие на организм человека. Эти препараты действуют на клетки, участвующие в воспалении, процессах регенерации и иммунном ответе.

Альдеслейкин - рекомбинантный аналог ИЛ-2. Оказывает иммуномодулирующее и противоопухолевое действие. Активирует клеточный иммунитет. Усиливает пролиферацию Т-лимфоцитов и ИЛ-2-зависимых клеточных популяций. Повышает цитотоксичность лимфоцитов и клеток - киллеров, которые распознают и уничтожают клетки опухоли. Усиливает продукцию гамма-интерферона, ФНО, ИЛ-1. Применяется при раке почек.

Беталейкин - рекомбинантный человеческий ИЛ-1 бета. Сти­мулирует лейкопоэз и иммунную защиту. Вводят под кожу или внутривенно при гнойных процессах с иммунодефи­цитом, при лейкопении в результате химиотерапии, при опухолях.

Ронколейкин - рекомбинантный препарат интерлейкина-2 -вводят внутривенно при сепсисе с иммунодефицитом, а также при раке почки.

Колониестимулирующие факторы:

Молграмостим (Лейкомакс) - рекомбинантный препарат человеческого гранулоцитарно-макрофагального колониестимулирующего фактора. Стимулирует лейкопоэз, обладает иммунотропной актив­ностью. Усиливает пролиферацию и дифференцировку предшественников, увеличивает содержание зрелых клеток в периферической крови, рост гранулоцитов, моноцитов, макрофагов. Повышает функциональную активность зрелых нейтрофилов, усиливает фагоцитоз и окислительный метаболизм, обеспечиваю­щий механизмы фагоцитоза, повышает цитотоксичность в отношении злокаче­ственных клеток.

Филграстим (Нейпоген) - рекомбинантный препарат человеческого гранулоцитарного колониестимулирующего факто­ра. Филграстим регулирует продукцию нейтрофилов и их поступление в кровь из костного мозга.

Ленограстим - рекомбинантный препарат человеческого гранулоцитарного колониестимулирующего фактора. Представляет со­бой высокоочищенный протеин. Является иммуномодулятором и стимулятором лейкопоэза.

Синтетические иммуностимуляторы: левамизол, изопринозин полиоксидоний, галавит.

Левамизол (декарис), производным имидазола, применяют в качестве иммуностимулятора, а также в качестве противоглистного средства при аскаридозе. Иммуностимулирующие свойства левамизола связывают с повышением активности макрофагов и Т-лимфоцитов.

Левамизол назначают внутрь при рецидивирующих герпетических инфекциях, хроническом вирусном гепатите, аутоиммунных заболеваниях (ревматоидный артрит, системная красная волчанка, болезнь Крона). Препарат применяют также при опухолях толстого кишечника после хирургической, лучевой или лекарственной терапии опухолей.

Изопринозин - препарат, содержащий инозин. Стимулирует активность макрофагов, продукцию интерлейкинов, пролиферацию Т-лимфоцитов.

Назначают внутрь при вирусных инфекциях, хронических инфекциях дыхательных и мочевыводящих путей, иммунодефицитах.

Полиоксидоний - синтетическое водорастворимое полимерное соеди­нение. Препарат обладает иммуностимулирующим и детоксицирующим действи­ем, увеличивает иммунную резистентность организма в отношении локальных и генерализованных инфекций. Полиоксидоний активирует все факторы естествен­ной резистентности: клетки моноцитарно-макрофагальной системы, нейтрофилы и естественные киллеры, повышая их функциональную активность при ис­ходно сниженных показателях.

Галавит – производное фталгидразида. Особенность этого препарата заключается в наличии не только иммуномодулирующих, но и выраженных противовоспалительных свойств.

Препараты других фармакологических классов с иммуностимулирующей активностью

1. Адаптогены и препараты растительного происхождения (фитопрепараты): препараты эхинацеи (иммунал), элеутерококка, женьшеня, родиолы розовой и др.

2. Витамины: кислота аскорбиновая (витамин С), токоферола ацетат (витамин Е), ретинола ацетат (витамин А) (см. раздел «Витамины»).

Препараты эхинацеи обладают иммуностимулирующими и противовоспалительными свойствами. При приеме внутрь эти препараты повышают фагоцитарную активность макрофагов и нейтрофилов, стимулируют продукцию интерлейкина-1, активность Т-хелперов, дифференцировку В-лимфоцитов.

Применяют препараты эхинацеи при иммунодефицитах и хронических воспалительных заболеваниях. В частности, иммунал назначают внутрь в каплях для профилактики и лечения острых респираторных инфекций, а также совместно с антибактериальными средствами при инфекциях кожи, дыхательных и мочевыводящих путей.

Общие принципы применения иммуностимуляторов у больных с вторичными иммунодефицитами

Наиболее обоснованным применение иммуномостимуляторов представляется при иммунодефицитах, проявляющихся повышенной инфекционной заболеваемостью. Главной мишенью иммуностимулирующих препаратов остаются вторичные иммунодефициты, которые проявляются частыми рецидивирующими, трудно поддающимися лечению инфекционно-воспалительными заболеваниями всех локализаций и любой этиологии. В основе каждого хронического инфекционно-воспалительного процесса лежат изменения в иммунной системе, которые являются одной из причин персистенции этого процесса.

· Иммуномодуляторы назначают в комплексной терапии одновременно с антибиотиками, противогрибковыми, противопротозойными или противовирусными средствами.

· При проведении иммунореабилитационных мероприятий, в частности при неполном выздоровлении после перенесенного острого инфекционного заболевания, иммуномодуляторы можно применять в виде монотерапии.

· Применять иммуномодуляторы целесообразно на фоне иммунологического мониторинга, который следует осуществлять вне зависимости от наличия или отсутствия исходных изменений в иммунной системе.

· Иммуномодуляторы, действующие на фагоцитарное звено иммунитета, можно назначать больным как с выявленными, так и с невыявленными нарушениями иммунного статуса, т.е. основанием для их применения является клиническая картина.

Понижение какого-либо параметра иммунитета, выявленное при иммунодиагностическом исследовании у практически здорового человека, не обязательно является основанием для назначения ему иммуномодулирующей терапии.

Контрольные вопросы:

1. Что такое иммуностимуляторы, какие бывают показания к проведению иммунотерапии, на какие виды подразделяют иммунодефицитные состояния?

2. Классификация иммуномодуляторов по преимущественной изберательности действия?

3. Иммуностимуляторы микробного происхождения и их синтетические аналоги, их фармакологичекие свойства, показания к применения, противопоказания, побочные эффекты?

4. Эндогенные иммуностимуляторы и их синтетические аналоги, их фармакологичекие свойства, показания к применения, противопоказания, побочные эффекты?

5. Препараты тимических пептидов и пептидов костного мозга их фармакологичекие свойства, показания к применения, противопоказания, побочные эффекты?

6. Препараты иммуноглобулинов и интерфероны (ИФН), их фармакологичекие свойства, показания к применения, противопоказания, побочные эффекты?

7. Препараты индукторов интерферона (интерфероногены), их фармакологичекие свойства, показания к применения, противопоказания, побочные эффекты?

8. Препараты интерлейкинов и колониестимулирующих факторов, их фармакологичекие свойства, показания к применения, противопоказания, побочные эффекты?

9. Синтетические иммуностимуляторы их фармакологичекие свойства, показания к применения, противопоказания, побочные эффекты?

10. Препараты других фармакологических классов с иммуностимулирующей активностью и общие принципы применения иммуностимуляторов у больных с вторичными иммунодефицитами?

Введение

    Общие сведения

    Классификация цитокинов

    Рецепторы цитокинов

    Цитокины и регуляция иммунного ответа

    Заключение

    Литература

Введение

Цитокины – одна из важнейших частей иммунной системы. Иммунной системе необходима система оповещения от клеток организма, как крик о помощи. Это, пожалуй, лучшее определение цитокинов. Когда клетка повреждена или поражена патогенным организмом, макрофаги и поврежденные клетки выделяют цитокины. Сюда входят такие факторы, как интерлейкин, интерферон и фактор некроза опухоли-альфа. Последний также доказывает, что разрушение опухолевой ткани контролируется иммунной системой. Когда цитокины выделяются, они призывают особые иммунные клетки, например, лейкоциты и Т- и В-клетки.

Цитокины также дают сигнал о какой-то конкретной цели, которую данные клетки должны выполнить. Цитокины и антитела абсолютно различны, так как антитела – это то, что связано с антигенами, они позволяют иммунной системе идентифицировать вторжение инородных организмов. Таким образом, можно провести аналогию: цитокины являются главным сигналом тревоги для захватчиков, а антитела – разведчиками. Процесс анализа цитокинов называется определением цитокинов.

Общие сведения

Цитокины (cytokines) [греч. kytos - сосуд, здесь - клетка и kineo - двигаю, побуждаю] - большая и разнообразная группа небольших по размерам (молекулярная масса от 8 до 80 кДа) медиаторов белковой природы - молекул-посредников («белков связи»), участвующих в межклеточной передаче сигналов преимущественно в иммунной системе.

К цитокинам относят фактор некроза опухоли, интерфероны, ряд интерлейкинов и др. Цитокины, которые синтезируются лимфоцитами и являются регуляторами пролиферации и дифференцировки, в частности гематопоэтических клеток и клеток иммунной системы, называют лимфокинами.

Все клетки иммунной системы имеют определенные функции и работают в четко согласованном взаимодействии, которое обеспечивается специальными биологически активными веществами - цитокинами - регуляторами иммунных реакций. Цитокины - это специфические белки, с помощью которых разнообразные клетки иммунной системы могут обмениваться друг с другом информацией и осуществлять координацию действий.

Набор и количества цитокинов, действующих на рецепторы клеточной поверхности, - "цитокиновая среда" - представляют собой матрицу взаимодействующих и часто меняющихся сигналов. Эти сигналы носят сложный характер из-за большого разнообразия цитокиновых рецепторов и из-за того, что каждый из цитокинов может активировать или подавлять несколько процессов, включая свой собственный синтез и синтез других цитокинов, а также образование и появление на поверхности клеток цитокиновых рецепторов.

Межклеточная сигнализация в иммунной системе осуществляется путем непосредственного контактного взаимодействия клеток или с помощью медиаторов межклеточных взаимодействий. При изучении дифференцировки иммунокомпетентных и гемопоэтических клеток, а также механизмов межклеточного взаимодействия, формирующих иммунный ответ, и была открыта большая и разнообразная группа растворимых медиаторов белковой природы - молекул-посредников ("белков связи"), участвующих в межклеточной передаче сигналов - цитокинов.

Гормоны обычно исключают из этой категории на основании эндокринного (а не паракринного или аутокринного) характера их действия. (см. Цитокины: механизмы проведения гормонального сигнала). Вместе с гормонами и нейромедиаторами они составляют основу языка химической сигнализации, путем которой в многоклеточном организме регулируется морфогенез и регенерация тканей.

В положительной и отрицательной регуляции иммунного ответа им принадлежит центральная роль. К настоящему времени у человека обнаружено и изучено в той или иной степени, как уже упоминалось выше, более ста цитокинов, и постоянно появляются сообщения об открытии новых. Для некоторых получены генно-инженерные аналоги. Цитокины действуют через активацию рецепторов цитокинов.

Общая характеристика цитокинов. Цитокины -- самая многочисленная, наиболее важная и универсальная в функциональном отношении группа гуморальных факторов системы иммунитета, в равной степени важная для реализации врожденного и адаптивного иммунитета. Цитокины участвуют во многих процессах; их нельзя назвать факторами, относящимися исключительно к иммунной системе, поскольку они играют важную роль в кроветворении, тканевом гомеостазе, межсистемной передаче сигналов.

Цитокины можно определить, как белковые или полипептидные факторы, лишенные специфичности в отношении антигенов, продуцируемые преимущественно активированными клетками кроветворной и иммунной систем и опосредующие межклеточные взаимодействия при кроветворении, воспалении, иммунных процессах и межсистемных коммуникациях.

Цитокины различаются по строению, биологической активности и другим свойствам. Однако наряду с различиями цитокины обладают общими свойствами, характерными для данного класса биорегуляторных молекул:

  • · Цитокины - это, как правило, гликозилированные полипептиды средней молекулярной массы (менее 30 кD).
  • · Цитокины вырабатываются клетками иммунной системы и другими клетками (например, эндотелием, фибробластами и др.) в ответ на активирующий стимул (патогенассоциированные молекулярные структуры, антигены, цитокины и др.) и участвуют в реакциях врожденного и адаптивного иммунитета, регулируя их силу и продолжительность. Некоторые цитокины синтезируются конститутивно.
  • · Секреция цитокинов - короткий по времени процесс. Цитокины не сохраняются как преформированные молекулы, а их синтез начинается всегда с транскрипции генов. Клетки вырабатывают цитокины в низкой концентрации (пикограммы на миллилитр).
  • · В большинстве случаев цитокины продуцируются и действуют на клетки-мишени, находящиеся в непосредственной близости (короткодистантное действие). Основное место действия цитокинов - межклеточный синапс.
  • · Избыточность системы цитокинов проявляется в том, что каждый тип клеток способен продуцировать несколько цитокинов, а каждый цитокин может секретироваться различными клетками.
  • · Для всех цитокинов характерна плейотропность, или полифункциональность действия. Так, проявление признаков воспаления обусловлено влиянием ИЛ-1, ФНОб, ИЛ-6, ИЛ-8. Дублирование функций обеспечивает надежность работы системы цитокинов.
  • · Действие цитокинов на клетки-мишени опосредуется высокоспецифичными высокоаффинными мембранными рецепторами, представляющими собой трансмембранные гликопротеины, состоящие, как правило, более чем из одной субъединицы. Внеклеточная часть рецепторов ответственна за связывание цитокина. Существуют рецепторы, устраняющие избыток цитокинов в патологическом очаге. Это так называемые рецепторы-ловушки. Растворимые рецепторы представляют собой внеклеточный домен мембранного рецептора, отделенный с помощью фермента. Растворимые рецепторы способны нейтрализовывать цитокины, участвовать в транспорте их в очаг воспаления и в выведении из организма.
  • · Цитокины работают по принципу сети. Они могут действовать согласованно. Многие функции, приписываемые первоначально одному цитокину, как оказалось, обусловлены согласованным действием нескольких цитокинов (синергизм действия). Примерами синергического взаимодействия цитокинов являются стимуляция воспалительных реакций (ИЛ-1, ИЛ-6 и ФНОа), а также синтеза IgE (ИЛ-4, ИЛ-5 и ИЛ-13).

Классификация цитокинов. Существует несколько классификаций цитокинов, основанных на разных принципах. Традиционная классификация отражает историю изучения цитокинов. Идея о том, что цитокины играют роль факторов, опосредующих функциональную активность клеток иммунной системы, возникла после открытия гетерогенности популяции лимфоцитов и осмысления факта, что только некоторые из них -- В-лимфоциты -- ответственны за образование антител. Пытаясь выяснить, не играют ли гуморальные продукты Т-клеток роль в реализации их функций, начали изучать биологическую активность факторов, содержащихся в культуральной среде Т-лимфоцитов (особенно активированных). Решение этой задачи, а также возникшего вскоре вопроса о гуморальных продуктах моноцитов/макрофагов, привело к открытию цитокинов. Вначале их называли лимфокинами и монокинами, в зависимости от того, какие клетки их продуцировали -- Т-лимфоциты или моноциты. Вскоре выяснилось, что четко разграничить лимфокины и монокины нельзя, и был введен общий термин -- «цитокины». В 1979 г. На симпозиуме по лимфокинам в Интерлакене (Швейцария) установили правила идентификации факторов этой группы, которым присвоили групповое название «интерлейкины» (IL). Тогда же свои названия получили два первых члена этой группы молекул -- IL-1 и IL-2. С тех пор все новые цитокины (кроме хемокинов -- см. далее) получали обозначение IL и порядковый номер.

Традиционно, в соответствии с биологическими эффектами, принято выделять следующие группы цитокинов:

  • · Интерлейкины (ИЛ-1-ИЛ-33) - секреторные регуляторные белки иммунной системы, обеспечивающие медиаторные взаимодействия в иммунной системе и связь ее с другими системами организма. Интерлейкины разделяют по функциональной активности на про- и противовоспалительные цитокины, ростовые факторы лимфоцитов, регуляторные цитокины и др.
  • · Интерфероны (ИФН) - цитокины, участвующие в противовирусной защите, с выраженным иммунорегуляторным действием (ИФН типа 1 - ИФН б, в, д, к, ?, ф; группы ИФНподобных цитокинов - ИЛ-28А, ИЛ-28В и ИЛ-29; ИФН типа 2 - ИФНг).
  • · Факторы некроза опухоли (ФНО) - цитокины с цитотоксическим и регуляторным действиями: ФНОа и лимфотоксины (ЛТ).
  • · Факторы роста гемопоэтических клеток - фактор роста стволовых клеток (Kit-ligand), ИЛ-3, ИЛ-7, ИЛ-11, эритропоэтин, тробопоэтин, гранулоцитарно-макрофагальный колониестимулирующий фактор - ГМ-КСФ, гранулоцитарный КСФ - Г-КСФ, макрофагальный КСФ - М-КСФ).
  • · Хемокины - С, СС, СХС (ИЛ-8), СХ3С - регуляторы хемотаксиса различных типов клеток.
  • · Факторы роста нелимфоидных клеток - регуляторы роста, дифференцировки и функциональной активности клеток различной тканевой принадлежности (фактор роста фибробластов - ФРФ, фактор роста эндотелиальных клеток, эпидермальный фактор роста - ЭФР эпидермиса) и трансформирующие факторы роста (ТФРв, ТФРб).

Понятие «цитокины» достаточно трудно отграничить от понятия «ростовые факторы». Более точному пониманию понятия «интерлейкин» (фактически совпадающего с понятием «цитокин») способствовало введение Номенклатурным комитетом Международного союза иммунологических обществ в 1992 г. критериев, регламентирующих присвоение новым интерлейкинам очередного номера: для этого требуется молекулярное клонирование, секвенирование и экспрессия гена интерлейкина, удостоверяющие уникальность его нуклеотидной последовательности, а также получение нейтрализующих моноклональных антител. Для установления отличий между интерлейкинами и сходными факторами важны данные о выработке этой молекулы клетками иммунной системы (лейкоцитами) и доказательство ее роли в регуляции иммунных процессов. Таким образом, подчеркивается обязательное участие интерлейкинов в функционировании иммунной системы. Если считать, что интерлейкинами называют все открытые после 1979 г. цитокины (кроме хемокинов) и, следовательно, эти понятия фактически тождественны, то можно считать, что такие ростовые факторы, как эпидермальный, фибробластный, тромбоцитарный не являются цитокинами, а из трансформирующих факторов роста (TGF) по признаку функциональной причастности к иммунной системе лишь TGFв может быть отнесен к цитокинам. Однако этот вопрос в международных научных документах строго не регламентирован.

Четкая структурная классификация цитокинов отсутствует. Тем не менее по особенностям их вторичной структуры выделяют несколько групп:

  • · Молекулы с преобладанием б-спирализованных тяжей. Они содержат 4 б-спиральных домена (2 пары б-спиралей, расположенных под углом друг к другу). Выделяют короткий и длинный (по протяженности б-спиралей) варианты. К первому относят большинство цитокинов-гемопоэтинов -- IL-2, IL-3, IL-4, IL-5, IL-7, IL-9, IL-13, IL-21, IL-27, IFNг и M-CSF; ко второму -- IL-6, IL-10, IL-11 и GM-CSF.
  • · Молекулы с преобладанием в-складчатых структур. К ним относят цитокины семейства фактора некроза опухоли и лимфотоксины («в-трилистник»), семейство IL-1 (в-сендвич), семейство TGF (цитокиновый узел).
  • · Короткая б/в-цепь (в-пласт с прилежащими б-спиралями) -- хемокины.
  • · Смешанные мозаичные структуры, например, IL-12.

В последние годы в связи с идентификацией большого числа новых цитокинов, иногда родственных ранее описанным, и образующих с ними единые группы, стали широко использовать классификацию, основанную на принадлежности цитокинов к структурно-функциональным семействам.

Еще одна классификация цитокинов основана на структурных особенностях их рецепторов. Как известно, через рецепторы и осуществляется действие цитокинов. По особенностям структуры полипептидных цепей выделяют несколько групп цитокиновых рецепторов. Приводимую классификацию применяют именно к полипептидным цепям. В состав одного рецептора могут входить цепи, относящиеся к разным семействам. Важность этой классификации обусловлена тем, что для разных типов полипептидных цепей рецепторов характерен определенный сигнальный аппарат, состоящий из тирозинкиназ, адапторных белков и транскрипционных факторов.

Наиболее многочисленный тип -- цитокиновые гемопоэтиновые рецепторы. Для их внеклеточных доменов характерно наличие 4 остатков цистеина и присутствие последовательности, содержащей остатки триптофана и серина -- WSXWS. Домены семейства фибронектина, содержащие 4 остатка цистеина, составляют основу рецепторов интерферонов. Характерная черта доменов, образующих внеклеточную часть рецепторов семейства TNFR, -- высокое содержание остатков цистеина («богатые цистеином домены»). Эти домены содержат 6 остатков цистеина. Группа рецепторов, внеклеточные домены которых относят к суперсемейству иммуноглобулинов, включает две группы -- рецепторы для IL-1 и несколько рецепторов, цитоплазматическая часть которых обладает тирозинкиназной активностью. Тирозинкиназная активность свойственна цитоплазматической части практически всех ростовых факторов (EGF, PDGF, FGF и т.д.). Наконец, особую группу образуют родопсиноподобные рецепторы хемокинов, 7-кратно пронизывающие мембрану. Однако не все полипептидные цепи рецепторов соответствуют этой классификации. Так, ни б-, ни в-цепи рецептора IL-2 не относят к семействам, представленным в таблице 3 (б-цепь содержит домены контроля комплемента). В основные группы также не входят рецепторы IL-12, общая в-цепь рецепторов IL-3, IL-5, GMCSF и некоторые другие полипептидные цепи рецепторов.

Практически все цитокиновые рецепторы (кроме иммуноглобулиноподобных, обладающих киназной активностью) состоят из нескольких полипептидных цепей. Нередко разные рецепторы содержат общие цепи. Наиболее яркий пример -- г-цепь, общая для рецепторов IL-2, IL-4, IL-7, IL-9, IL-15, IL-21, обозначаемая как г(с). Дефекты этой цепи играют важную роль в развитии иммунодефицитной патологии. Общая в-цепь входит в состав рецепторов GM-CSF, IL-3 и IL-5. Общие цепи имеют IL-7 и TSLP (б-цепь), а также IL-2 и IL-15, IL-4 и IL-13 (в обоих случаях -- в-цепь).

Как правило, рецепторы представлены на поверхности покоящихся клеток в небольшом количестве и нередко в неполном субъединичном составе. Обычно в таком состоянии рецепторы обеспечивают адекватный ответ только при действии очень высоких доз цитокинов. При активации клеток число мембранных рецепторов цитокинов увеличивается на порядки, более того, эти рецепторы «доукомплектовываются» полипептидными цепями, как это было показано выше на примере рецептора для IL-2. Под влиянием активации число молекул этого рецептора значительно возрастает и в их составе появляется б-цепь, ген которой экспрессируется в процессе активации. Благодаря таким изменениям лимфоцит приобретает способность пролиферировать в ответ на действие IL-2.

Механизмы действия цитокинов

Внутриклеточная передача сигнала при действии цитокинов. В состав С-концевой цитоплазматической части некоторых цитокиновых рецепторов (относящихся к суперсемейству иммуноглобулинов) входит домен, обладающий активностью тирозинкиназы. Все эти киназы относятся к разряду протоонкогенов, т.е. при изменении генетического окружения становятся онкогенами, обеспечивая бесконтрольную пролиферацию клетки. Эти киназы имеют собственное название. Так, киназу, входящую в состав рецептора M-CSF, обозначают как c-Fms; киназу SCF -- c-Kit; известна киназа гемопоэтического фактора -- Flt-3 (Fms-like thyrosine kinase 3). Рецепторы, обладающие собственной киназной активностью, запускают передачу сигнала непосредственно, поскольку их киназа обусловливает фосфорилирование как самого рецептора, так и прилежащих к нему молекул.

Наиболее типичный вариант проявления активности характерен для рецепторов гемопоэтинового (цитокинового) типа, содержащих 4 б-спиральных домена. К цитоплазматической части таких рецепторов примыкают молекулы тирозинкиназ группы Jak-киназ (Janus-associated family kinases). В цитоплазматической части цепей рецепторов есть специальные участки для связывания этих киназ (проксимальный и дистальный боксы). Всего известно 5 Janus-киназ -- Jak1, Jak2, Jak3, Tyk1 и Tyk2. Они в различных комбинациях кооперируются с разными цитокиновыми рецепторами, обладая сродством к конкретным полипептидным цепям. Так, киназа Jak3 взаимодействует с г(с)-цепью; при дефектах гена, кодирующего эту киназу, развивается комплекс нарушений в иммунной системе сходный с наблюдаемым при дефектах гена полипептидной цепи рецептора.

При взаимодействии цитокина с рецептором происходит генерация сигнала, приводящего к формированию транскрипционных факторов и активации генов, определяющих реакцию клетки на действие цитокина. Одновременно происходит поглощение клеткой комплекса цитокина с рецептором и расщепление его в эндосомах. Сама по себе интернализация этого комплекса к передаче сигнала отношения не имеет. Она необходима для утилизации цитокина, предотвращающей его накопление в месте активации клеток-продуцентов. Большую роль в регуляции этих процессов играет сродство рецептора к цитокину. Только при достаточно высокой степени сродства (порядка 10-10 М) генерируется сигнал и происходит поглощение комплекса цитокина с рецептором.

Индукция сигнала начинается с аутокаталитического фосфорилирования связанных с рецептором Jak-киназ, запускаемого конформационными измененями рецептора, которые происходят в результате его взаимодействия с цитокином. Активированные Jak-киназы фосфорилируют цитоплазматические факторы STAT (Signal transducers and activators of transcription), присутствующие в цитоплазме в неактивной мономерной форме.

Фосфорилированные мономеры приобретают сродство друг к другу и димеризуются. Димеры STAT перемещаются в ядро и выступают в качестве транскрипционных факторов, связываясь с промоторными участками генов-мишеней. При действии провоспалительных цитокинов активируются гены молекул адгезии, самих цитокинов, ферментов окислительного метаболизма и др. При действии факторов, вызывающих пролиферацию клеток, происходит индукция генов, ответственных за прохождение клеточного цикла и т.д.

Jak/STAT-опосредованный путь передачи сигналов от цитокинов -- основной, но не единственный. С рецептором связаны не только Jak-киназы, но и киназы семейства Src, а также PI3K. Их активация запускает дополнительные сигнальные пути, приводящие к активации АР-1 и других транскрипционных факторов. Активируемые транскрипционные факторы участвуют не только в передаче сигнала от цитокинов, но и в других сигнальных путях.

Существуют сигнальные пути, участвующие в контроле биологических эффектов цитокинов. Такие пути связаны с факторами группы SOCS (Suppressors of cytokine signaling), содержащей фактор SIC и 7 факторов SOCS (SOCS-1 -- SOCS-7). Включение этих факторов происходит при активации цитокиновых сигнальных путей, что приводит к образованию петли отрицательной обратной связи. Факторы SOCS содержат домен SH2, участвующий в реализации одного из следующих процессов:

  • · прямого ингибирования Jak-киназ в результате связывания с ними и индукции их дефосфорилирования;
  • · конкуренции с факторами STAT за связывание с цитоплазматической частью цитокиновых рецепторов;
  • · ускорения деградации сигнальных белков по убиквитиновому пути.

Выключение генов SOCS приводит к нарушению баланса цитокинов с преобладанием синтеза IFNг и сопутствующей этому лимфопенией и усилением апоптоза.

Особенности функционирования системы цитокинов. Цитокиновая сеть.

Из сказанного выше следует, что при активации клеток чужеродными агентами (носителями PAMP при активации миелоидных клеток и антигенами при активации лимфоцитов) индуцируется (или усиливается до функционально значимого уровня) как синтез цитокинов, так и экспрессия их рецепторов. Это создает условия для локального проявления эффектов цитокинов. Действительно, если один и тот же фактор активирует и клетки-продуценты цитокинов, и клетки-мишени, создаются оптимальные условия для локального проявления функций этих факторов.

Обычно цитокины связываются, подвергаются интернализации и расщеплению клеткой-мишенью, практически не диффундируя от секретируемых клеток-продуцентов. Нередко цитокины бывают трансмембранными молекулами (например, IL-1б и TNFб) или представляются клеткам-мишеням в связанном с пептидогликанами межклеточного матрикса состоянии (IL-7 и ряд других цитокинов), что также способствует локальному характеру их действия.

В норме цитокины если и содержатся в сыворотке крови, то в концентрациях, недостаточных для проявления их биологических эффектов. Далее на примере воспаления мы рассмотрим ситуации, в которых цитокины оказывают системное действие. Однако эти случаи всегда являются проявлением патологии, иногда очень серьезной. По-видимому, локальный характер действия цитокинов имеет для нормального функционирования организма принципиальное значение. Об этом свидетельствует высокая скорость их выведения через почки. Обычно кривая выведения цитокинов состоит из двух компонент -- быстрой и медленной. Т1/2 быстрой компоненты для IL-1в составляет 1,9 мин, для IL-2 -- 5 мин (Т1/2 медленной составляет 30-120 мин). Свойство близкодействия отличает цитокины от гормонов -- дальнодействующих факторов (поэтому утверждение «цитокины -- это гормоны иммунной системы» принципиально неверно).

Для системы цитокинов характерна избыточность. Это означает, что практически любую выполняемую конкретным цитокином функцию дублируют другие цитокины. Именно поэтому выключение отдельного цитокина, например, вследствие мутации его гена, не вызывает фатальных последствий для организма. Действительно, мутация гена конкретного цитокина практически никогда не приводит к развитию иммунодефицита.

Например, IL-2 известен как фактор роста Т-клеток; при искусственном удалении (путем генетического нокаута) кодирующего его гена существенного нарушения пролиферации Т-клеток не выявляют, однако регистрируют изменения, обусловленные дефицитом регуляторных Т-клеток. Это связано с тем, что пролиферацию Т-клеток в отсутствие IL-2 обеспечивают IL-15, IL-7, IL-4, а также комбинации нескольких цитокинов (IL-1в, IL-6, IL-12, TNFб). Точно так же дефект гена IL4 не приводит к значительным нарушениям в системе В-клеток и переключении изотипов иммуноглобулинов, поскольку сходные эффекты проявляет IL-13. В то же время некоторые цитокины не имеют функциональных аналогов. Наиболее известный пример незаменимого цитокина -- IL-7, лимфопоэтическое действие которого, по крайней мере на определенных этапах Т-лимфопоэза уникально, в связи с чем дефекты генов самого IL-7 или его рецептора приводят к развитию тяжелой комбинированной иммунной недостаточности (ТКИН).

Помимо избыточности, в системе цитокинов проявляется и другая закономерность: цитокины плейотропны (действуют на различные мишени) и полифункциональны (вызывают различные эффекты). Так, число клеток-мишеней IL-1в и TNFб с трудом поддается учету. Столь же разнообразны вызываемые ими эффекты, участвующие в формировании комплексных реакций: воспаления, некоторых этапов гемопоэза, нейротропных и других реакций.

Еще одна важная черта, свойственная системе цитокинов, -- взаимосвязь и взаимодействие цитокинов. С одной стороны, это взаимодействие заключается в том, что одни цитокины, действуя на фоне индукторов или самостоятельно, вызывают или усиливают (реже подавляют) выработку других цитокинов. Наиболее яркие примеры усиливающего действия -- активность провоспалительных цитокинов IL-1в и TNFб, усиливающих собственную выработку и образование других провоспалительных цитокинов (IL-6, IL-8, других хемокинов). IL-12 и IL-18 являются индукторами IFNг. TGFв и IL-10, наоборот, подавляют выработку различных цитокинов. IL-6 проявляет ингибирующую активность в отношении провоспалительных цитокинов, а IFNг и IL-4 взаимно подавляют выработку друг друга и цитокинов соответствующих (Th1 и Th2) групп. Взаимодействие между цитокинами проявляется и на функциональном уровне: одни цитокины усиливают или подавляют действие других цитокинов. Описаны синергизм (например, внутри группы провоспалительных цитокинов) и антагонизм цитокинов (например, между Th1- и Th2-цитокинами).

Cуммируя полученные данные, можно заключить, что ни один из цитокинов не существует и не проявляет своей активности изолированно -- на всех уровнях цитокины испытывают влияние других представителей этого класса молекул. Результат такого многообразного взаимодействия иногда может быть неожиданным. Так, при использовании в лечебных целях высоких доз IL-2 возникают опасные для жизни побочные эффекты, некоторые из которых (например, шок, подобный токсическому, без бактериемии) удается снять антителами, направленными не против IL-2, а против TNFб.

Наличие множественных перекрестных взаимодействий в системе цитокинов послужило причиной создания понятия «цитокиновая сеть», достаточно четко отражающего суть явления.

Для цитокиновой сети характерны следующие свойства:

  • · индуцибельность синтеза цитокинов и экспрессии их рецепторов;
  • · локальность действия, обусловленная скоординированной экспрессией цитокинов и их рецепторов под влиянием одного и того же индуктора;
  • · избыточность, объясняющаяся перекрыванием спектров действия разных цитокинов;
  • · взаимосвязи и взаимодействие, проявляющиеся на уровне синтеза и реализации функций цитокинов.

Цитокиновая регуляция функций клеток-мишеней осуществляется с помощью аутокринного, паракринного или эндокринного механизмов. Некоторые цитокины (ИЛ-1, ИЛ-6, ФНОб и др.) способны участвовать в реализации всех перечисленных механизмов.

Ответ клетки на влияние цитокина зависит от нескольких факторов:

  • · от типа клеток и их исходной функциональной активности;
  • · от локальной концентрации цитокина;
  • · от присутствия других медиаторных молекул.

Таким образом, клетки-продуценты, цитокины и специфические для них рецепторы на клетках мишенях формируют единую медиаторную сеть. Именно набор регуляторных пептидов, а не индивидуальные цитокины, определяют окончательный ответ клетки. В настоящее время система цитокинов рассматривается как универсальная система регуляции на уровне целостного организма, обеспечивающая развитие защитных реакций (например, при инфекции).

В последние годы сложилось представление о системе цитокинов, объединяющей:

  • 1) клетки-продуценты;
  • 2) растворимые цитокины и их антагонисты;
  • 3) клетки-мишени и их рецепторы.

Нарушения различных компонентов системы цитокинов приводят к развитию многочисленных патологических процессов, а потому выявление дефектов в этой регуляторной системе имеет важное значение для правильной постановки диагноза и назначения адекватной терапии.

Основные компоненты системы цитокинов.

Клетки-продуценты цитокинов

I. Основную группу клеток-продуцентов цитокинов в адаптивном иммунном ответе представляют лимфоциты. Покоящиеся клетки не секретируют цитокины. При распознавании антигена и при участии рецепторных взаимодействий (CD28-CD80/86 для Т-лимфоцитов и СD40-CD40L для В-лимфоцитов) происходит активация клеток, приводящая к транскрипции генов цитокинов, трансляции и секреции гликозилированных пептидов в межклеточное пространство.

CD4 Т-хелперы представлены субпопуляциями: Тh0, Тh1, Тh2, Тh17, Tfh, которые различаются между собой спектром секретируемых цитокинов в ответ на различные антигены.

Тh0 вырабатывают широкий спектр цитокинов в очень низких концентрациях.

Направление дифференцировки Th0 определяет развитие двух форм иммунного ответа с преобладанием гуморальных или клеточных механизмов.

Природа антигена, его концентрация, локализация в клетке, тип антигенпрезентирующих клеток и определенный набор цитокинов регулируют направление дифференцировки Тh0.

Дендритные клетки после захвата и процессинга антигена представляют антигенные пептиды Th0 клеткам и вырабатывают цитокины, регулирующие направление их дифференцировки в эффекторные клетки. ИЛ-12 индуцирует синтез ИФНг Т-лимфоцитами и ]ЧГК. ИФНу обеспечивает дифференцировку ТЫ1, которые начинают секретировать цитокины (ИЛ-2, ИФНу, ИЛ-3, ФНОа, лимфотоксины), регулирующие развитие реакций на внутриклеточные патогены (гиперчувствительности замедленного типа (ГЗТ) и различные типы клеточной цитотоксичности).

ИЛ-4 обеспечивает дифференцировку Тh0 в Тh2. Активированные Тh2 вырабатывают цитокины (ИЛ-4, ИЛ-5, ИЛ-6, ИЛ-13 и др.), определяющие пролиферацию В-лимфоцитов, их дальнейшую дифференцировку в плазматические клетки и развитие реакций антителогенеза, преимущественно на внеклеточные патогены.

ИФНг негативно регулирует функцию Тh2-клеток и, наоборот, ИЛ-4, ИЛ-10, секретируемые Тh2, угнетают функцию Тh1. Молекулярный механизм этой регуляции связан с транскрипционными факторами. Экспрессия Т-bet и STAT4, детерминированная ИФНу, направляет дифференцировку Т-клеток по пути Тh1 и супрессирует развитие Тh2. ИЛ-4 индуцирует экспрессию GATA-3 и STAT6, что соответственно обеспечивает превращение наивных Тh0 в Тh2-клетки.

В последние годы описана особая субпопуляция Т-клеток хелперов (Тh17), продуцирующих ИЛ-17. Члены семейства ИЛ-17 могут экспрессироваться активированными клетками памяти (CD4CD45RO), у5Т-клетками, NKT клетками, нейтрофилами, моноцитами под влиянием ИЛ-23, ИЛ-6, ТФРв, вырабатываемых макрофагами и дендритными клетками. Основным дифференцировочным фактором у человека является ROR-C, у мышей - ROR-гl. Показана кардинальная роль ИЛ-17 в развитии хронического воспаления и аутоиммунной патологии.

Кроме того, Т-лимфоциты в тимусе могут дифференцироваться в естественные клетки-регуляторы (Treg), экспрессирующие поверхностные маркеры CD4+ CD25+ и транскрипционный фактор FOXP3. Эти клетки способны подавлять иммунный ответ, опосредуемый Тh1 и Тh2-клетками, путем прямого межклеточного контакта и синтеза ТФРв и ИЛ-10.

Т-цитотоксические клетки (CD8+), естественные киллеры - слабые продуценты цитокинов, таких, как интерфероны, ФНОа и лимфотоксины.

Избыточная активация одной из субпопуляций Тh может определить развитие одного из вариантов иммунного ответа. Хроническая несбалансированность активации Тh способна привести к формированию иммунопатологических состояний, связанных с проявлениями аллергии, аутоиммунной патологии, хронических воспалительных процессов и др.

II. В системе врожденного иммунитета основными продуцентами цитокинов являются клетки миелоидного ряда. С помощью Toll-по- добных рецепторов (TLRs) они распознают сходные молекулярные структуры различных патогенов, так называемые патогенассоциированные молекулярные патерны (РАМП), например, липополисахарид (ЛПС) грамотрицательных бактерий, липотейхоевые кислоты, пептидогликаны грамположительных микроорганизмов, флагеллин, ДНК, богатую неметилированными СрG повторами, и др. В результате такого взаимодействия с TLR запускается внутриклеточный каскад передачи сигнала, приводящий к экспрессии генов двух основных групп цитокинов: провоспалительных и ИФН типа 1. Главным образом эти цитокины (ИЛ-1, -6, -8, -12, ФНОа, ГМ-КСФ, ИФН, хемокины и др.) индуцируют развитие воспаления и участвуют в защите организма от бактериальных и вирусных инфекций.

III. Клетки, не относящиеся к иммунной системе (клетки соединительной ткани, эпителия, эндотелия), конститутивно секретируют аутокринные факторы роста (ФРФ, ЕФР, ТФРр и др.). и цитокины, поддерживающие пролиферацию гемопоэтических клеток.

Избыточная экспрессия цитокинов небезопасна для организма и может привести к развитию чрезмерной воспалительной реакции, острофазового ответа. В регуляции выработки провоспалительных цитокинов принимают участие различные ингибиторы. Так, описан ряд веществ, которые неспецифически связывают цитокин ИЛ-1 и препятствуют проявлению его биологического действия (а2-макроглобулин, С3-компонент комплемента, уромодулин). Специфическими ингибиторами ИЛ-1 могут быть растворимые рецепторы-ловушки, антитела и рецепторный антагонист ИЛ-1 (ИЛ-1RA). При развитии воспаления происходит усиление экспрессии гена ИЛ-1RA. Но и в норме этот антагонист присутствует в крови в высокой концентрации (до 1 нг/мл и более), блокируя действие эндогенного ИЛ-1.

Клетки-мишени

Действие цитокинов на клетки-мишени опосредуются через специфические рецепторы, связывающие цитокины с очень высокой аффинностью, причем отдельные цитокины могут использовать общие субъединицы рецепторов. Каждый цитокин связывается со своим специфическим рецептором.

Рецепторы цитокинов представляют собой трансмембранные белки и делятся на 5 основных типов. Наиболее распространен так называемый гемопоэтиновый тип рецепторов, имеющих два экстраклеточных домена, один из которых содержит общую последовательность аминокислотных остатков двух повторов триптофана и серина, разделенных любой аминокислотой (WSXWS-мотив). Второй тип рецепторов может иметь два внеклеточных домена с большим количеством консервативных цистеинов. Это рецепторы семейства ИЛ-10 и ИФН. Tретий тип представлен рецепторами цитокинов, относящихся к группе ФНО. Четвертый тип рецепторов цитокинов принадлежит к суперсемейству иммуноглобулиновых рецепторов, имеющих внеклеточные домены, напоминающие по строению домены молекул иммуноглобулинов. Пятый тип рецепторов, связывающих молекулы семейства хемокинов, представлен трансмембранными белками, пересекающими клеточную мембрану в 7 местах. Рецепторы цитокинов могут существовать в растворимой форме, сохраняя способность связывать лиганды.

Цитокины способны влиять на пролиферацию, дифференцировку, функциональную активность и апоптоз клеток-мишеней. Проявление биологической активности цитокинов в клетках-мишенях зависит от участия различных внутриклеточных систем в передаче сигнала от рецептора, что связано с особенностями клеток-мишеней. Сигнал к апоптозу проводится в том числе с помощью специфического участка семейства рецепторов ФНО, так называемого домена «смерти». Дифференцировочный и активирующий сигналы передаются посредством внутриклеточных белков Jak-STAT - сигнальных трансдукторов и активаторов транскрипции. G-белки участвуют в передаче сигнала от хемокинов, что приводит к усилению миграции и адгезии клеток.

Последний компонент - цитокины и их антагонисты, были описаны выше.

В случае несостоятельности местных защитных реакций воспалительная реакция развивается, возрастает синтез цитокинов, они попадают в циркуляцию, и их действие проявляется на системном уровне. Начинается системная воспалительная реакция или острофазовый ответ на уровне организма. При этом провоспалительные цитокины оказывают влияние практически на все органы и системы организма, участвующие в регуляции гомеостаза.

Действие провоспалительных цитокинов на ЦНС приводит к снижению аппетита и изменению всего комплекса поведенческих реакций. Временное прекращение поиска пищи и снижение сексуальной активности выгодно в плане экономии энергии для одной лишь за дачи -- борьбы с внедрившимся патогеном. Этот сигнал обеспечивают цитокины, так как их попадание в циркуляцию, безусловно, означает, что местная защита не справилась с патогеном и требуется включение системной воспалительной реакции. Одно из первых проявлений системной воспалительной реакции, связанное с действием цитокинов на терморегуляторный центр гипоталамуса, заключается в подъеме температуры тела. Увеличение температуры является одной из эффективных защитных реакций, так как при повышенной температуре снижается способность ряда бактерий к размножению, и, напротив, возрастает пролиферация лимфоцитов.

В печени под влиянием цитокинов увеличивается синтез острофазовых белков и компонентов системы комплемента, нужных для борьбы с патогеном, но одновременно снижается синтез альбумина. То есть на уровне регуляции экспрессии отдельных генов цитокины направляют энергетические потоки, выбирая только то, что нужно для развития защитных реакций. Видимо, такая система регуляции сформировалась эволюционно и несет безусловные выгоды для наиболее оптимального защитного ответа макроорганизма. Другим примером избирательного действия цитокинов служит изменение ионного состава плазмы крови при развитии системной воспалительной реакции. При этом происходит снижение уровня ионов железа, но повышение уровня ионов цинка, а ведь хорошо известно, что лишить бактериальную клетку ионов железа -- значит снизить ее пролиферативный потенциал (на этом основано действие лактоферрина). С другой стороны, увеличение уровня цинка нужно для нормальной работы иммунной системы, в частности, это необходимо для образования биологически активного сывороточного фактора тимуса -- одного из основных тимических гормонов, обеспечивающих дифференцировку лимфоцитов. Влияние цитокинов на кроветворную систему связано с существенной активизацией гемопоэза. Увеличение числа лейкоцитов, конечно, необходимо для наращивания количества клеток, непосредственно убивающих патогены, и для восполнения потерь нейтрофильных гранулоцитов в очаге гнойного воспаления. Действие на системусвертывания крови направлено на усиление свертываемости, которое необходимо для остановки кровотечения и для прямого блокирования патогена. Наконец, в рамках иммунной системы цитокины осуществляют взаимосвязь между неспецифическими защитными реакциями и специфическим иммунитетом, действуя в обоих направлениях. Таким образом, на уровне организма цитокины осуществляют связь между иммунной, нервной, эндокринной, кроветворной и другими системами и служат для их вовлечения в организацию и ре гуляцию единой защитной реакции. Цитокины как раз и служат той организующей системой, которая формирует и регулирует весь комплекс защитных реакций организма при внедрении патогенов. Приведенные данные ясно указывают, что нельзя ограничить понятие защитных реакций только участием неспецифических механизмов резистентности и специфического иммунного ответа. В единой защитной реакции участвует весь организм и все системы, на первый взгляд не относящиеся к поддержанию иммунитета. Увеличение уровней цитокинов не может продолжаться бесконтрольно, так как гиперпродукция цитокинов служит причиной развития ряда патологических состояний, в частности, септического шока. Появление цитокинов в кровотоке сразу приводит к увеличению синтеза стероидных гормонов, причем IL-1 и другие провоспалительные цитокины вызывают как усиление синтеза рилизинг-факторов, так и стимуляцию продукции гормонов клетками коры надпочечников. Стероидные гормоны, известные как одни из наиболее мощных иммуносупрессоров, блокируют синтез цитокинов и не позволяют их уровню превысить предельные значения. Это является эффективным механизмом отрицательной обратной связи для контроля гиперпродукции цитокинов. Тем не менее, в ряде случаев уровни цитокинов превышают физиологические концентрации. Цитокины в низких концентрациях нужны для правильного формирования местного воспаления, более высокие дозы вызывают развитие системной воспалительной реакции, но патологически высокие концентрации приводят к состоянию септического шока и гибели организма.

К основным противовоспалительным цитокинам относятся IL-4, IL-10, IL-13, GTRиRAIL-1.Вместе с тем, к этой же группе могут быть причислены и другие цитокины, входящие в состав семейства, регулирующего специфический иммунный ответ, или активно участвующие в регуляции миеломоноцитопоэза и лимфопоэза.

Приведем краткие сведения об основных противовоспалительных цитокинах.

IL-4 вырабатывается Тh2, Тh3, тучными клетками, базофилами, В-лимфоцитами и стромальными клетками костного мозга. Матричная РНКIL-4 появляется через 4 часа после стимуляции Тh 2 и Тh 3 . Одновременно с этим определяется и первая минимальная концентрацияIL-4 в кровотоке. ВыработкаIL-4 достигает максимальных величин через 48 часов с момента начала стимуляции Т-хелперов.

IL-4 обладает чрезвычайно широким спектром действия. Известно, что к этому лимфокину на различных клетках организма находится рецептор, способный вступать в реакцию с такими цитокинами, какIL-1и,IL-13,Ifи,TNF, лимфотоксинами (Lt)и, благодаря чему проявляются конкурентные отношения между про- и противовоспалительными цитокинами.

IL-4 вызывает активацию, пролиферацию и дифференцировку Т- и В-лимфоцитов. Под его влиянием происходит переход клеток-предшественников в CTL. Он является ключевой регуляторной молекулой, запускающей процессы роста и дифференцировки В-лимфоцитов в продуценты иммуноглобулинов. Под его воздействием селективно стимулируется секрецияIgG1 иIgE.IL-4 участвует в активации тучных клеток и, кроме того, препятствует окислительному взрыву в макрофагах. Этот лимфокин усиливает хемотаксис и адгезивные свойства лейкоцитов, а также синтез и секрециюG-CSFи M-CSFмоноцитами и макрофагами. Он оказывает влияние на выработку фибробластами кожи основного хемотаксина для эозинофилов, названный эотаксином. ПрисутствиеIL-4 вызывает «кислородный взрыв» в лейкоцитах. Он также стимулирует цитотоксический (цитостатический)эффект этих клеток.

Вместе с тем, IL-4 ингибирует функции моноцитов, макрофагов и NК-лимфоцитов, блокируя и спонтанную, и стимулированную продукцию провоспалительных цитокинов –IL-1, IL-6,TNFи If. Под его воздействием угнетается влияние TNFна способность макрофагов продуцировать синтазу оксида азота.

IL-4ингибирует передачу индуцируемых Ifсигналов, но не влияет на синергическое действие вируса герпеса и TNF.

За последние годы интерес к IL-4значительно возрос, ибо обнаружено его выраженное противоопухолевое действие. Однако механизм этого явления пока нуждается в дальнейшем тщательном изучении.

IL -10 представляет собой гомодимер с молекулярной массой от 35 до 40 кДа. Он продуцируетсяCD8+, Тh1 и Тh2. Кроме того,IL-10может в небольших количествах образовываться макрофагами и В-лимфоцитами. Под влиянием IL-2 в культуре усиливается выработка IL-10 как покоящимися Т-клетками, так и Т-клетками, стимулированными Ат к СD3. Следовательно, IL-2 усиливает выработку IL-10, который, в свою очередь, подавляет его секрецию. Синтез IL-10 стимулируется также IL-4, IL-7 и IL-15.

IL-10 вызывает пролиферацию и дифференцировку Т- и В-лимфоцитов и ингибирует активность Тh1. Под его воздействием подавляется антигенпрезентирующая функция макрофагов, так как снижается на них экспрессия МНС 2 класса. Способность IL-10 угнетать продукцию IL-1, IL-6, IL-8, G-CSF,GM-CSF, TNF, IFиIfсвязана с его супрессирующим влиянием на синтезIL-12.

IL-10является мощным ингибитором противоопухолевой цитотоксичности циркулирующих моноцитов и альвеолярных макрофагов человека.

При стимуляции макрофаги секретируют вначале провоспалительные цитокины, в том числе IL-12, и лишь впоследствии сравнительно небольшое количество IL-10. Однако при действии на макрофаги иммунных комплексов продукция IL-10 может резко возрастать, что ведет к снижению противоинфекционной защиты и развитию хронических инфекций.

В опытах in vitroустановлено, что IL-10 тормозит антимикобактериальную активность макрофагов, угнетает выработку Ifи способствует внутриклеточному переживанию микобактерий. Показано, что этот эффект может быть связан с ослаблением экспрессииCD80 (B7-1), в результате чего не передается сигнал на кластерCD28 Т-клеток.

За последние годы получены факты, позволяющие считать, что эндогенный и экзогенный IL-10 усиливает секрецию NOстимулированными макрофагами.

IL-10 является иммунодепрессантом. Он также ингибирует цитотоксическую активность, что связано с супрессией костимуляторной функции АПК. В то же время IL-10 усиливает рост активированных CD8+. Следовательно, IL-10 по-разному воздействует на Т-клетки, что зависит от того, в каком состоянии они находятся (активированы или не активированы).

Под действием IL-10усиливается продукцияIgG иIgAактивированными В-клетками.

IL -13 представляет собой полипептид, состоящий из 112 аминокислот. Онвыделяется активированными Тh2, CTL (CD8+), базофилами и тучными клетками. Секреция IL-13 чувствительна к ингибитору протеинкиназы С. Этот цитокин, как и многие другие интерлейкины, обладает выраженным плейотропным влиянием.

IL-13по механизму своего действия напоминаетIL-4.Он вызывает на В-лимфоцитах экспрессиюHLA-антигенов 2 класса, а такжеCD23, CD71, CD72. Под его влиянием на моноцитах наступает экспрессия антигеновHLA-2. IL-13стимулирует антигенпрезентирующую функцию макрофагов и повышает адгезию и выживаемость моноцитов. Кроме того, он является фактором роста В-лимфоцитов и способствует переключению синтеза сIgM наIgG4или IgE.Как иIL-4 и IL-10, он блокирует продукцию макрофагами провоспалительных цитокинов –IL-1, IL-6, IL-8 и противовоспалительных цитокиновIL-10,TNF, G-CSF, GM-CSF.

IL-13 индуцирует синтезNK-лимфоцитами IF, но ингибирует ответNKклеток на действиеIL-2. Он также является активатором эозинофилов и, кроме того, увеличивает продукцию IgE. Благодаря действиюIL-13 продлевается выживание трансплантата и, следовательно, блокируется деятельность CTL.

TGF (трансформирующий фактор роста) является важнейшим противовоспалительнымцитокином.Так,мыши с искусственным дефектом продукцииTGFбыстро погибают при явлении генерализованного воспаления и некроза тканей, ибо при этом не проявляется противовоспалительное действие данного цитокина.

TGFпродуцируется многими клетками, в том числе моноцитами, макрофагами, эозинофилами, активированными Т- и В-лимфоцитами. Основные его функции сводятся к участию в воспалительных реакциях. Существенная роль отводится данному цитокину в процессе репарации тканей. Он усиливает рост фибробластов и синтез коллагена, но является ингибитором дифференцировки и клеточного деления Т- и В-лимфоцитов, а такжеNK-клеток. Подавляя функцию многих клеток, в том числе Тh1, CTL,NК-лимфоцитов, лимфокинактивированных киллеров (так называемыхLAK-клеток),TGFприводит к супрессии иммунного ответа. Этот цитокин ингибирует секрециюIgG, усиливая образование IgAплазматическими клетками.

Выработка TGFповышается под влиянием IL-3 и IL-5, но уменьшается под действием IL-4. Предполагается, что IL-4 может выполнять роль физиологического модулярного переключателя экспрессии TGF в эозинофилах при раневом процессе или канцерогенезе.