7 февраля 1832 года Николай Лобачевский представил на суд коллег свой первый труд по неевклидовой геометрии. Этот день стал началом переворота в математике, а работа Лобачевского - первым шагом к теории относительности Эйнштейна. Сегодня "РГ" собрала пятерку самых распространенных заблуждений о теории Лобачевского, бытующих среди далеких от математической науки людей

Миф первый. Геометрия Лобачевского не имеет ничего общего с Евклидовой.

На самом деле геометрия Лобачевского не слишком сильно отличается от привычной нам Евклидовой. Дело в том, что из пяти постулатов Евклида четыре первых Лобачевский оставил без изменения. То есть он согласен с Евклидом в том, что между двумя любыми точками можно провести прямую, что ее всегда можно продолжить до бесконечности, что из любого центра можно провести окружность с любым радиусом, и что все прямые углы равны между собой. Не согласился Лобачевский только с пятым, наиболее сомнительным с его точки зрения постулатом Евклида. Звучит его формулировка чрезвычайно мудрено, но если переводить ее на понятный простому человеку язык, то получается, что, по мнению Евклида, две непараллельные прямые обязательно пересекутся. Лобачевский сумел доказать ложность этого посыла.

Миф второй. В теории Лобачевского параллельные прямые пересекаются

Это не так. На самом деле пятый постулат Лобачевского звучит так: "На плоскости через точку, не лежащую на данной прямой, проходит более чем одна прямая, не пересекающая данную". Иными словами, для одной прямой можно провести как минимум две прямые через одну точку, которые не будут ее пересекать. То есть в этом постулате Лобачевского речи о параллельных прямых вообще не идет! Говорится лишь о существовании нескольких непересекающихся прямых на одной плоскости. Таким образом, предположение о пересечении параллельных прямых родилось из-за банального незнания сути теории великого российского математика.

Миф третий. Геометрия Лобачевского - единственная неевклидова геометрия

Неевклидовы геометрии - это целый пласт теорий в математике, где основой является отличный от Евклидова пятый постулат. Лобачевский, в отличие от Евклида, к примеру, описывает гиперболическое пространство. Существует еще теория, описывающая сферическое пространство - это геометрия Римана. Вот в ней-то как раз параллельные прямые пересекаются. Классический тому пример из школьной программы - меридианы на глобусе. Если посмотреть на лекало глобуса, то окажется, что все меридианы параллельны. Меж тем, стоит нанести лекало на сферу, как мы видим, что все ранее параллельные меридианы сходятся в двух точках - у полюсов. Вместе теории Евклида, Лобачевского и Римана называют "три великих геометрии".

Миф четвертый. Геометрия Лобачевского не применима в реальной жизни

Напротив, современная наука приходит к пониманию, что Евклидова геометрия - лишь частный случай геометрии Лобачевского, и что в реальный мир точнее описывается именно формулами русского ученого. Сильнейшим толчком к дальнейшему развитию геометрии Лобачевского стала теория относительности Альберта Эйнштейна, которая показала, что само пространство нашей Вселенной не является линейным, а представляет собой гиперболическую сферу. Между тем, сам Лобачевский, несмотря на то, что всю жизнь работал над развитием своей теории, называл ее "воображаемой геометрией".

Миф пятый. Лобачевский первым создал неевклидову геометрию

Это не совсем так. Параллельно с ним и независимо от него к подобным выводам пришли венгерский математик Янош Бойяи и знаменитый немецкий ученый Карл Фридрих Гаусс. Однако труды Яноша не были замечены широкой публикой, а Карл Гаусс и вовсе предпочел не издаваться. Поэтому именно наш ученый считается первопроходцем в этой теории. Однако существует несколько парадоксальная точка зрения, что первым неевклидову геометрию придумал сам Евклид. Дело в том, что он самокритично считал свой пятый постулат не очевидным, поэтому большую часть из своих теорем он доказал, не прибегая к нему.

Мы привыкли думать, что геометрия наблюдаемого мира евклидова, т.е. в нем выполняются законы той геометрии, которая изучается в школе. На самом деле это не совсем так. В этой статье мы рассмотрим проявления в реальности геометрии Лобачевского, которая, на первый взгляд, является сугубо абстрактной.

Геометрия Лобачевского отличается от привычной евклидовой тем, что в ней через точку, не лежащую на данной прямой, проходят по крайней мере две прямые, лежащие с данной прямой в одной плоскости и не пересекающие её. Ее также называют гиперболической геометрией.

1. Евклидова геометрия — через белую точку проходит только одна прямая, которая не пересекает желтую прямую
2. Геометрия Римана — любые две прямые пересекаются (не существует параллельных прямых)
3. Геометрия Лобачевского — существует бесконечно много прямых не пересекающих желтую линию и проходящих через белую точку

Для того, чтобы читатель мог это себе наглядно представить, кратко опишем модель Клейна. В этой модели плоскость Лобачевского реализуется как внутренность круга радиуса один, где точками плоскости являются точки этого круга, а прямыми — хорды. Хорда — прямая, соединяющая две точки окружности. Расстояние между двумя точками определяется достаточно сложно, но оно нам не понадобится. Из рисунка выше становится понятно, что через точку Р проходит бесконечно много прямых, не пересекающих прямую а. В стандартной Евклидовой геометрии, существует лишь одна прямая проходящая через точку Р и не пересекающая прямую а. Эта прямая является параллельной.

Теперь перейдем к главному — практическим применениям геометрии Лобачевского.

Спутниковые навигационные системы (GPS и ГЛОНАСС) состоят из двух частей: орбитальная группировка из 24-29 спутников, равномерно расположенных вокруг Земли, и управленческий сегмент на Земле, обеспечивающий синхронизацию времени на спутниках и использование ими единой системы координат. На спутниках установлены очень точные атомные часы, а в приемниках (GPS-навигаторах) обычные, кварцевые. В приемниках также есть информация о координатах всех спутников в любой момент времени. Спутники с маленькими интервалами передают сигнал, содержащий данные о времени начала передачи. Получив сигнал от не менее четырех спутников, приемник может скорректировать свои часы и вычислить расстояния до этих спутников по формуле ((время отправки сигнала спутником) — (время приема сигнала от спутника)) х (скорость света) = (расстояние до спутника). Вычисленные расстояния также корректируются по встроенным в приемник формулам. Далее, приемник находит координаты точки пересечения сфер с центрами в спутниках и радиусами, равными вычисленным расстояниям до них. Очевидно, это будут координаты приемника.

Читателю наверняка известно, что, благодаря эффекту в Специальной теории относительности, из-за большой скорости спутника время на орбите идет отлично от времени на Земле. Но еще есть подобный эффект в Общей теории относительности, связанный как раз с неевклидовой геометрией пространства-времени. Опять же не будем вдаваться в математические подробности поскольку они довольно таки абстрактные. Но, если перестать учитывать эти эффекты, то уже за сутки работы в показаниях навигационной системы накопится ошибка порядка 10 км.

Формулы геометрии Лобачевского также используются в физике высоких энергий, а именно, в расчетах ускорителей заряженных частиц. Гиперболические пространства (т.е. пространства, в которых действуют законы гиперболической геометрии) встречаются и в самой природе. Приведем побольше примеров:

Геометрия Лобачевского проглядывается в структурах кораллов, в организации клеточных структур у растении, в архитектуре, у некоторых цветков и так далее. Кстати, если вы помните в прошлом выпуске мы рассказывали о шестиугольниках в природе, так вот, в гиперболической природе альтернативой являются семиугольники, которые также широко распространены.

Voted Thanks!

Возможно Вам будет интересно:


Геометрия Лобачевского

(1) евклидова геометрия; (2) геометрия Римана; (3) геометрия Лобачевского

Геометрия Лобачевского (гиперболическая геометрия ) - одна из неевклидовых геометрий , геометрическая теория, основанная на тех же основных посылках, что и обычная евклидова геометрия , за исключением аксиомы о параллельных , которая заменяется на аксиому о параллельных Лобачевского .

Евклидова аксиома о параллельных (точнее, одно из эквивалентных ей утверждений) гласит:

Через точку, не лежащую на данной прямой, проходит не более одной прямой, лежащей с данной прямой в одной плоскости и не пересекающей её.

В геометрии Лобачевского, вместо неё принимается следующая аксиома:

Через точку, не лежащую на данной прямой, проходят по крайней мере две прямые, лежащие с данной прямой в одной плоскости и не пересекающие её.

Широко распространено заблуждение, что в геометрии Лобачевского параллельные прямые пересекаются . Геометрия Лобачевского имеет обширные применения как в математике, так и в физике. Историческое и философское её значение состоит в том, что её построением Лобачевский показал возможность геометрии, отличной от евклидовой , что знаменовало новую эпоху в развитии геометрии , математики и науки вообще.

История

Попытки доказательства пятого постулата

Отправным пунктом геометрии Лобачевского послужил V постулат Евклида - аксиома, эквивалентная аксиоме о параллельных . Он входил в список постулатов в «Началах» Евклида . Относительная сложность и неинтуитивность его формулировки вызывала ощущение его вторичности и порождала попытки вывести его как теорему из остальных постулатов Евклида.

Среди многих пытавшихся доказать пятый постулат были, в частности, следующие крупные учёные.

При этих попытках доказательства пятого постулата математики вводили (явно или неявно) некоторое новое утверждение, казавшееся им более очевидным.

Были предприняты попытки использовать доказательство от противного:

  • итальянский математик Саккери () (сформулировав противоречащее постулату утверждение, он вывел ряд следствий и, ошибочно признав часть из них противоречивыми, он счёл постулат доказанным),
  • немецкий математик Ламберт (около , опубликовано в ) (проведя исследования , он признал, что не смог обнаружить в построенной им системе противоречия).

Наконец, стало возникать понимание о том, что возможно построение теории, основанной на противоположном постулате:

  • немецкие математики Швейкарт () и Тауринус () (однако они не осознали, что такая теория будет логически столь же стройной).

Создание неевклидовой геометрии

Лобачевский в работе «О началах геометрии» (), первой его печатной работе по неевклидовой геометрии, ясно заявил, что V постулат не может быть доказан на основе других посылок евклидовой геометрии, и что допущение постулата, противоположного постулату Евклида, позволяет построить геометрию столь же содержательную, как и евклидова, и свободную от противоречий.

Одновременно и независимо к аналогичным выводам пришёл Янош Бойяи , а Карл Фридрих Гаусс пришёл к таким выводам ещё раньше. Однако труды Бойяи не привлекли внимания, и он вскоре оставил эту тему, а Гаусс вообще воздерживался от публикаций, и о его взглядах можно судить лишь по нескольким письмам и дневниковым записям. Например, в письме 1846 года астроному Г. Х. Шумахеру Гаусс так отозвался о работе Лобачевского:

Это сочинение содержит в себе основания той геометрии, которая должна была бы иметь место и притом составляла бы строго последовательное целое, если бы евклидова геометрия не была бы истинной… Лобачевский называет ее «воображаемой геометрией»; Вы знаете, что уже 54 года (с 1792 г.) я разделяю те же взгляды с некоторым развитием их, о котором не хочу здесь упоминать; таким образом, я не нашёл для себя в сочинении Лобачевского ничего фактически нового. Но в развитии предмета автор следовал не по тому пути, по которому шёл я сам; оно выполнено Лобачевским мастерски в истинно геометрическом духе. Я считаю себя обязанным обратить Ваше внимание на это сочинение, которое, наверное, доставит Вам совершенно исключительное наслаждение.

В итоге Лобачевский выступил как первый наиболее яркий и последовательный пропагандист новой геометрии. Хотя геометрия Лобачевского развивалась как умозрительная теория, и сам Лобачевский называл её «воображаемой геометрией», тем не менее именно он впервые открыто предложил её не как игру ума, а как возможную и полезную теорию пространственных отношений. Однако доказательство её непротиворечивости было дано позже, когда были указаны её интерпретации (модели).

Утверждение геометрии Лобачевского

Модель Пуанкаре

Содержание геометрии Лобачевского

Лобачевский строил свою геометрию, отправляясь от основных геометрических понятий и своей аксиомы, и доказывал теоремы геометрическим методом, подобно тому, как это делается в геометрии Евклида. Основой служила теория параллельных линий, так как именно здесь начинается отличие геометрии Лобачевского от геометрии Евклида. Все теоремы, не зависящие от аксиомы о параллельных, являются общими для обеих геометрий; они образуют так называемую абсолютную геометрию , к которой относятся, например, теоремы о равенстве треугольников. Вслед за теорией параллельных строились другие разделы, включая тригонометрию и начала аналитической и дифференциальной геометрии.

Приведём (в современных обозначениях) несколько фактов геометрии Лобачевского, отличающих её от геометрии Евклида и установленных самим Лобачевским.

Через точку P , не лежащую на данной прямой R (см. рисунок), проходит бесконечно много прямых, не пересекающих R и находящихся с ней в одной плоскости; среди них есть две крайние x , y , которые и называются параллельными прямой R в смысле Лобачевского. В моделях Клейна (Пуанкаре) они изображаются хордами (дугами окружностей), имеющими с хордой (дугой) R общий конец (который по определению модели исключается, так что эти прямые не имеют общих точек).

Угол между перпендикуляром PB из P на R и каждой из параллельных (называемый углом параллельности ) по мере удаления точки P от прямой убывает от 90° до 0° (в модели Пуанкаре углы в обычном смысле совпадают с углами в смысле Лобачевского, и потому на ней этот факт можно видеть непосредственно). Параллель x с одной стороны (а y с противоположной) асимптотически приближается к а , а с другой - бесконечно от неё удаляется (в моделях расстояния определяются сложно, и потому этот факт непосредственно не виден).

Для точки, находящейся от заданной прямой на расстоянии PB = a (см. рисунок), Лобачевский дал формулу для угла параллельности П(a) :


Здесь q - некоторая постоянная, связанная с кривизной пространства Лобачевского. Она может служить абсолютной единицей длины аналогично тому, как в сферической геометрии особое положение занимает радиус сферы.

Если прямые имеют общий перпендикуляр, то они бесконечно расходятся в обе стороны от него. К любой из них можно восстановить перпендикуляры, которые не достигают другой прямой.

В геометрии Лобачевского не существует подобных, но неравных треугольников; треугольники равны, если их углы равны.

Сумма углов всякого треугольника меньше и может быть сколь угодно близкой к нулю. Это непосредственно видно на модели Пуанкаре. Разность , где , , - углы треугольника, пропорциональна его площади:

Из формулы видно, что существует максимальная площадь треугольника, и это конечное число: .

Линия равных расстояний от прямой не есть прямая, а особая кривая, называемая эквидистантой , или гиперциклом .

Предел окружностей бесконечно увеличивающегося радиуса не есть прямая, а особая кривая, называемая предельной окружностью , или орициклом .

Предел сфер бесконечно увеличивающегося радиуса не есть плоскость, а особая поверхность - предельная сфера, или орисфера ; замечательно, что на ней имеет место евклидова геометрия. Это служило Лобачевскому основой для вывода формул тригонометрии.

Длина окружности не пропорциональна радиусу, а растёт быстрее. В частности, в геометрии Лобачевского число не может быть определено как отношение длины окружности к её диаметру.

Чем меньше область в пространстве или на плоскости Лобачевского, тем меньше геометрические соотношения в этой области отличаются от соотношений евклидовой геометрии. Можно сказать, что в бесконечно малой области имеет место евклидова геометрия. Например, чем меньше треугольник, тем меньше сумма его углов отличается от ; чем меньше окружность, тем меньше отношение её длины к радиусу отличается от , и т. п. Уменьшение области формально равносильно увеличению единицы длины, поэтому при безграничном увеличении единицы длины формулы геометрии Лобачевского переходят в формулы евклидовой геометрии. Евклидова геометрия есть в этом смысле «предельный» случай геометрии Лобачевского.

Заполнение плоскости и пространства правильными политопами

Замощение плоскости Лобачевского правильными треугольниками ({3;7})

Плоскость Лобачевского может быть замощена не только правильными треугольниками , квадратами и шестиугольниками , но и любыми другими правильными многоугольниками . При этом в одной вершине паркета должно сходиться не менее 7 треугольников, 5 квадратов, 4 пяти- и шестиугольников и 3 многоугольников с числом сторон более 6. Каждое замощение (в одной вершине сходится M N-угольников) требует строго определённого размера единичного N-угольника, в частности, его площадь должна равняться:

Заполнение пространства Лобачевского правильными додекаэдрами ({5,3,4})

В отличие от обычного пространства, которое можно заполнить правильными многогранниками только одним способом (по 8 кубов в вершине), трёхмерное пространство Лобачевского можно заполнить правильными многогранниками четырьмя способами:

  • {3,5,3} (по 12 икосаэдров в вершине)
  • {4,3,5} (по 20 кубов в вершине)
  • {5,3,4} (по 8 додекаэдров в вершине)
  • {3,5,3} (по 20 додекаэдров в вершине)

Кроме этого, существует 11 способов заполнить пространство Лобачевского правильными мозаичными орисферами.

Приложения

  • Сам Лобачевский применил свою геометрию к вычислению определённых интегралов .
  • В теории функций комплексного переменного геометрия Лобачевского помогла построить теорию автоморфных функций . Связь с геометрией Лобачевского была здесь отправным пунктом исследований Пуанкаре , который писал, что «неевклидова геометрия есть ключ к решению всей задачи».
  • Геометрия Лобачевского находит применение также в теории чисел , в её геометрических методах, объединённых под названием «геометрия чисел ».
  • Была установлена тесная связь геометрии Лобачевского с кинематикой специальной (частной) теории относительности . Эта связь основана на том, что равенство, выражающее закон распространения света
при делении на , то есть для скорости света, даёт - уравнение сферы в пространстве с координатами , , - составляющими скорости по осям х , у , z (в «пространстве скоростей»). Преобразования Лоренца сохраняют эту сферу и, так как они линейны, переводят прямые пространства скоростей в прямые. Следовательно, согласно модели Клейна, в пространстве скоростей внутри сферы радиуса с , то есть для скоростей, меньших скорости света, имеет место геометрия Лобачевского.
  • Замечательное приложение геометрия Лобачевского нашла в общей теории относительности . Если считать распределение масс материи во Вселенной равномерным (это приближение в космических масштабах допустимо), то оказывается возможным, что при определённых условиях пространство имеет геометрию Лобачевского. Таким образом, предположение Лобачевского о его геометрии как возможной теории реального пространства оправдалось.
  • При помощи модели Клейна, даётся очень простое и короткое доказательство теоремы о бабочке в евклидовой геометрии.

См. также

Примечания

Труды основоположников

  • Н. И. Лобачевский «Геометрические исследования по теории параллельных линий» . - 1941.
  • Об основаниях геометрии. Сборник классических работ по геометрии Лобачевского и развитию ее идей. М.: Гостехиздат, 1956.

Литература

  • Александров А. Д., Нецветаев Н. Ю. Геометрия, - Наука, Москва, 1990.
  • Александров П. С. Что такое неэвклидова геометрия, - УРСС, Москва, 2007.
  • Делоне Б. Н. Элементарное доказательство непротиворечивости планиметрии Лобачевского, - Гостехиздат, Москва, 1956.
  • Иовлев Н. Н. «Введение в элементарную геометрию и тригонометрию Лобачевского» . - М.-Л.: Гиз., 1930. - С. 67.
  • Клейн Ф. «Неевклидова геометрия» . - М.-Л.: ОНТИ, 1936. - С. 356.
  • Попов А. Г.

Плоскость Лобачевского

Геометрия Лобачевского (гиперболическая геометрия ) - одна из неевклидовых геометрий , геометрическая теория, основанная на тех же основных посылках, что и обычная евклидова геометрия , за исключением аксиомы о параллельных , которая заменяется на аксиому о параллельных Лобачевского .

Евклидова аксиома о параллельных гласит:

через точку, не лежащую на данной прямой, проходит только одна прямая, лежащая с данной прямой в одной плоскости и не пересекающая её.

В геометрии Лобачевского, вместо неё принимается следующая аксиома:

через точку, не лежащую на данной прямой, проходят по крайней мере две прямые, лежащие с данной прямой в одной плоскости и не пересекающие её.

Геометрия Лобачевского имеет обширные применения как в математике, так и в физике. Историческое её значение состоит в том, что её построением Лобачевский показал возможность геометрии, отличной от евклидовой, что знаменовало новую эпоху в развитии геометрии и математики вообще.

История

Попытки доказательства пятого постулата

Отправным пунктом геометрии Лобачевского послужил V постулат Евклида - аксиома, эквивалентная аксиоме о параллельных . Он входил в список постулатов в «Началах» Евклида). Относительная сложность и неинтуитивность его формулировки вызывала ощущение его вторичности и порождала попытки вывести его из остальных постулатов Евклида.

Среди пытавшихся доказать были следующие учёные:

  • древнегреческие математики Птолемей (II в.), Прокл (V в.) (основывался на предположении о конечности расстояния между двумя параллельными),
  • Ибн аль-Хайсам из Ирака (конец - начало вв.) (основывался на предположении, что конец движущегося перпендикуляра к прямой описывает прямую линию),
  • иранский математики Омар Хайям (2-я половина - начало XII вв.) и Насир ад-Дин ат-Туси (XIII в.) (основывались на предположении, что две сходящиеся прямые не могут при продолжении стать расходящимися без пересечения),
  • немецкий математик Клавиус (),
  • итальянские математики
    • Катальди (впервые в 1603 году напечатал работу, целиком посвященную вопросу о параллельных),
  • английский математик Валлис ( , опубликовано в ) (основывался на предположении, что для всякой фигуры существует ей подобная, но не равная фигура),
  • французский математик Лежандр () (основывался на допущении, что через каждую точку внутри острого угла можно провести прямую, пересекающую обе стороны угла; у него также были другие попытки доказательства).

При этих попытках доказательства пятого постулата математики вводили некоторое новое утверждение, казавшееся им более очевидным.

Были предприняты попытки использовать доказательство от противного:

  • итальянский математик Саккери () (сформулировав противоречащее постулату утверждение, он вывел ряд следствий и, ошибочно признав часть из них противоречивыми, он счёл постулат доказанным),
  • немецкий математик Ламберт (около , опубликовано в ) (проведя исследования , он признал, что не смог обнаружить в построенной им системе противоречия).

Наконец, стало возникать понимание о том, что возможно построение теории, основанной на противоположном постулате:

  • немецкие математики Ф. Швейкарт () и Тауринус () (однако они не осознали, что такая теория будет логически столь же стройной).

Создание неевклидовой геометрии

Лобачевский в работе «О началах геометрии» (), первой его печатной работе по неевклидовой геометрии, ясно заявил, что V постулат не может быть доказан на основе других посылок евклидовой геометрии, и что допущение постулата, противоположного постулату Евклида, позволяет построить геометрию столь же содержательную, как и евклидова, и свободную от противоречий.

Одновременно и независимо к аналогичным выводам пришёл Янош Бойяи , а Карл Фридрих Гаусс пришёл к таким выводам ещё раньше. Однако труды Бойяи не привлекли внимания, и он вскоре оставил эту тему, а Гаусс вообще воздерживался от публикаций, и о его взглядах можно судить лишь по нескольким письмам и дневниковым записям. Например, в письме 1846 года астроному Г. Х. Шумахеру Гаусс так отзывается о работе Лобачевского:

Это сочинение содержит в себе основания той геометрии, которая должна была бы иметь место и притом составляла бы строго последовательное целое, если бы евклидова геометрия не была бы истинной… Лобачевский называет ее «воображаемой геометрией»; Вы знаете, что уже 54 года (с 1792 г.) я разделяю те же взгляды с некоторым развитием их, о котором не хочу здесь упоминать; таким образом, я не нашёл для себя в сочинении Лобачевского ничего фактически нового. Но в развитии предмета автор следовал не по тому пути, по которому шёл я сам; оно выполнено Лобачевским мастерски в истинно геометрическом духе. Я считаю себя обязанным обратить Ваше внимание на это сочинение, которое, наверное, доставит Вам совершенно исключительное наслаждение.

В итоге Лобачевский выступил как первый наиболее яркий и последовательный пропагандист этой теории.

Хотя геометрия Лобачевского развивалась как умозрительная теория и сам Лобачевский называл её «воображаемой геометрией», тем не менее именно Лобачевский рассматривал её не как игру ума, а как возможную теорию пространственных отношений. Однако доказательство её непротиворечивости было дано позже, когда были указаны её интерпретации и тем полностью решён вопрос о её реальном смысле, логической непротиворечивости.

Утверждение геометрии Лобачевского

угол - ещё сложнее.

Модель Пуанкаре

Содержание геометрии Лобачевского

Пучок параллельных прямых в геометрии Лобачевскоого

Лобачевский строил свою геометрию, отправляясь от основных геометрических понятий и своей аксиомы, и доказывал теоремы геометрическим методом, подобно тому, как это делается в геометрии Евклида. Основой служила теория параллельных линий, так как именно здесь начинается отличие геометрии Лобачевского от геометрии Евклида. Все теоремы, не зависящие от аксиомы о параллельных, общи обеим геометриям и образуют так называемую абсолютную геометрию , к которой относятся, например, теоремы о равенстве треугольников. Вслед за теорией параллельных строились другие разделы, включая тригонометрию и начала аналитической и дифференциальной геометрии.

Приведём (в современных обозначениях) несколько фактов геометрии Лобачевского, отличающих её от геометрии Евклида и установленных самим Лобачевским.

Через точку P , не лежащую на данной прямой R (см. рисунок), проходит бесконечно много прямых, не пересекающих R и находящихся с ней в одной плоскости; среди них есть две крайние x , y , которые и называются параллельными прямой R в смысле Лобачевского. В моделях Клейна (Пуанкаре) они изображаются хордами (дугами окружностей), имеющими с хордой (дугой) R общий конец (который по определению модели исключается, так что эти прямые не имеют общих точек).

Угол между перпендикуляром PB из P на R и каждой из параллельных (называемый углом параллельности ) по мере удаления точки P от прямой убывает от 90° до 0° (в модели Пуанкаре углы в обычном смысле совпадают с углами в смысле Лобачевского, и потому на ней этот факт можно видеть непосредственно). Параллель x с одной стороны (а y с противоположной) асимптотически приближается к а , а с другой - бесконечно от неё удаляется (в моделях расстояния определяются сложно, и потому этот факт непосредственно не виден).

Для точки, находящейся от заданной прямой на расстоянии PB = a (см. рисунок), Лобачевский дал формулу для угла параллельности П(a) :


Здесь q - некоторая постоянная, связанная с кривизной пространства Лобачевского. Она может служить абсолютной единицей длины аналогично тому, как в сферической геометрии особое положение занимает радиус сферы.

Если прямые имеют общий перпендикуляр, то они бесконечно расходятся в обе стороны от него. К любой из них можно восстановить перпендикуляры, которые не достигают другой прямой.

В геометрии Лобачевского не существует подобных, но неравных треугольников; треугольники равны, если их углы равны.

Сумма углов всякого треугольника меньше π и может быть сколь угодно близкой к нулю. Это непосредственно видно на модели Пуанкаре. Разность δ = π − (α + β + γ) , где α , β , γ - углы треугольника, пропорциональна его площади:

Из формулы видно, что существует максимальная площадь треугольника, и это конечное число: πq 2 .

Линия равных расстояний от прямой не есть прямая, а особая кривая, называемая эквидистантой , или гиперциклом .

Предел окружностей бесконечно увеличивающегося радиуса не есть прямая, а особая кривая, называемая предельной окружностью , или орициклом .

Предел сфер бесконечно увеличивающегося радиуса не есть плоскость, а особая поверхность - предельная сфера, или орисфера ; замечательно, что на ней имеет место евклидова геометрия. Это служило Лобачевскому основой для вывода формул тригонометрии.

Длина окружности не пропорциональна радиусу, а растёт быстрее. В частности, в геометрии Лобачевского число π не может быть определено как отношение длины окружности к её диаметру.

Чем меньше область в пространстве или на плоскости Лобачевского, тем меньше геометрические соотношения в этой области отличаются от соотношений евклидовой геометрии. Можно сказать, что в бесконечно малой области имеет место евклидова геометрия. Например, чем меньше треугольник, тем меньше сумма его углов отличается от π ; чем меньше окружность, тем меньше отношение её длины к радиусу отличается от 2π , и т. п. Уменьшение области формально равносильно увеличению единицы длины, поэтому при безграничном увеличении единицы длины формулы геометрии Лобачевского переходят в формулы евклидовой геометрии. Евклидова геометрия есть в этом смысле «предельный» случай геометрии Лобачевского.

Приложения

  • Сам Лобачевский применил свою геометрию к вычислению определённых интегралов .
  • В теории функций комплексного переменного геометрия Лобачевского помогла построить теорию автоморфных функций . Связь с геометрией Лобачевского была здесь отправным пунктом исследований Пуанкаре , который писал, что «неевклидова геометрия есть ключ к решению всей задачи».
  • Геометрия Лобачевского находит применение также в теории чисел , в её геометрических методах, объединённых под названием «геометрия чисел ».
  • Была установлена тесная связь геометрии Лобачевского с кинематикой специальной (частной) теории относительности . Эта связь основана на том, что равенство, выражающее закон распространения света
при делении на t 2 , то есть для скорости света, даёт - уравнение сферы в пространстве с координатами v x , v y , v z - составляющими скорости по осям х , у , z (в «пространстве скоростей»). Преобразования Лоренца сохраняют эту сферу и, так как они линейны, переводят прямые пространства скоростей в прямые. Следовательно, согласно модели Клейна, в пространстве скоростей внутри сферы радиуса с , то есть для скоростей, меньших скорости света, имеет место геометрия Лобачевского.
  • Замечательное приложение геометрия Лобачевского нашла в общей теории относительности . Если считать распределение масс материи во Вселенной равномерным (это приближение в космических масштабах допустимо), то оказывается возможным, что при определённых условиях пространство имеет геометрию Лобачевского. Таким образом, предположение Лобачевского о его геометрии как возможной теории реального пространства оправдалось.
  • При помощи модели Клейна, даётся очень простое и короткое доказательство

», посвященного отношениям российской и британской науки, математик Валентина Кириченко рассказывает ПостНауке о революционности идей Лобачевского для геометрии XIX века.

Параллельные прямые не пересекаются даже в геометрии Лобачевского. Где-то в фильмах часто можно встретить фразу: «А у нашего Лобачевского параллельные прямые пересеклись». Звучит красиво, но не соответствует действительности. Николай Иванович Лобачевский действительно придумал необыкновенную геометрию, в которой параллельные прямые ведут себя совсем не так, как мы привыкли. Но все же не пересекаются.

Мы привыкли думать, что две параллельные прямые не сближаются и не удаляются. То есть, какую бы точку на первой прямой мы ни взяли, расстояние от нее до второй прямой одно и то же, от точки не зависит. Но действительно ли это так? И почему это так? И как это вообще можно проверить?

Если речь идет о физических прямых, то для наблюдения нам доступен только небольшой участок каждой прямой. А учитывая погрешности измерения, мы не сможем сделать никаких определенных выводов о том, как прямые ведут себя очень-очень далеко от нас. Подобные вопросы возникали уже у древних греков. В III веке до нашей эры древнегреческий геометр Евклид очень точно изложил основное свойство параллельных линий, которое он не мог ни доказать, ни опровергнуть. Поэтому он назвал его постулатом - утверждением, которое следует принять на веру. Это знаменитый пятый постулат Евклида: если две прямые на плоскости пересечь с секущей, так что сумма внутренних односторонних углов меньше двух прямых, то есть меньше 180 градусов, то при достаточном продолжении эти две прямые пересекутся, причем именно по ту сторону от секущей, по которую сумма меньше двух прямых углов.

Ключевые слова в этом постулате - «при достаточном продолжении». Именно из-за этих слов постулат невозможно проверить опытным путем. Может быть, прямые пересекутся в зоне видимости. Может быть, через 10 километров или за орбитой Плутона, а может быть, вообще в другой галактике.

Свои постулаты и результаты, которые из них логически следуют, Евклид изложил в знаменитой книге «Начала». От древнегреческого названия этой книги происходит русское слово «стихии», а от латинского названия - слово «элементы». «Начала» Евклида - это самый популярный учебник всех времен и народов. По числу изданий он уступает только Библии.

Особенно хочется отметить замечательное британское издание 1847 года с очень наглядной и красивой инфографикой. Вместо унылых обозначений на чертежах там используются цветные рисунки - не то, что в современных школьных учебниках геометрии.

Вплоть до прошлого века «Начала» Евклида были обязательны для изучения на всех образовательных программах, где подразумевалось интеллектуальное творчество, то есть не просто обучение ремеслу, а что-то более интеллектуальное. Неочевидность пятого постулата Евклида вызвала естественный вопрос: нельзя ли его доказать, то есть вывести логически из остальных допущений Евклида? Это пытались сделать очень многие математики от современников Евклида до современников Лобачевского. Как правило, они сводили пятый постулат к какому-то более наглядному утверждению, в которое проще поверить.

Например, в XVII веке английский математик Джон Валлис свел пятый постулат к такому утверждению: существует два подобных, но неравных треугольника, то есть два треугольника, у которых углы равны, а размеры разные. Казалось бы, что может быть проще? Просто изменим масштаб. Но, оказывается, возможность менять масштаб с сохранением всех углов и пропорций - это эксклюзивное свойство евклидовой геометрии, то есть геометрии, в которой выполнены все постулаты Евклида, включая пятый.

В XVIII веке шотландский ученый Джон Плейфэр переформулировал пятый постулат в том виде, в котором он обычно фигурирует в современных школьных учебниках: две прямые, пересекающие друг друга, не могут быть одновременно параллельны третьей прямой. Именно в таком виде пятый постулат фигурирует в современных школьных учебниках.

К началу XIX века у многих сложилось впечатление, что доказывать пятый постулат - это все равно что изобретать вечный двигатель - совершенно бесполезное занятие. Но и предположить, что геометрия Евклида не единственно возможная, ни у кого не хватило духу: слишком велик был авторитет Евклида. В такой ситуации открытия Лобачевского были, с одной стороны, закономерны, а с другой - абсолютно революционны.

Лобачевский заменил пятый постулат на прямо противоположное утверждение. Аксиома Лобачевского звучала так: если из точки, не лежащей на прямой, выпустить все лучи, пересекающие эту прямую, то слева и справа эти лучи будут ограничены двумя предельными лучами, которые прямую уже не пересекут, но будут становиться к ней все ближе и ближе. Причем угол между этими предельными лучами будет строго меньше 180 градусов.

Из аксиомы Лобачевского сразу следует, что через точку, не лежащую на данной прямой, можно провести не одну прямую, параллельную данной, как у Евклида, а сколько угодно. Но вести себя эти прямые будут иначе, чем у Евклида. Например, если у нас есть две параллельные прямые, то они могут сначала сближаться, а потом удаляться. То есть расстояние от точки на первой прямой до второй прямой будет зависеть от точки. Будет разным для разных точек.

Геометрия Лобачевского противоречит нашей интуиции отчасти потому, что на небольших расстояниях, с которыми мы обычно имеем дело, она очень мало отличается от евклидовой. Похожим образом мы воспринимаем кривизну поверхности Земли. Когда мы идем от дома к магазину, нам кажется, что мы идем по прямой, а Земля плоская. Но если мы летим, скажем, из Москвы в Монреаль, то мы уже замечаем, что самолет летит по дуге окружности, потому что именно это кратчайший путь между двумя точками на поверхности Земли. То есть мы замечаем, что Земля больше похожа на футбольный мяч, чем на блин.

Геометрию Лобачевского тоже можно проиллюстрировать с помощью футбольного мяча, только не обычного, а гиперболического. Гиперболический футбольный мяч склеен примерно как обычный. Только в обычном мяче к черным пятиугольникам приклеиваются белые шестиугольники, а в гиперболическом мяче вместо пятиугольников нужно делать семиугольники и тоже обклеивать их шестиугольниками. При этом получится уже, конечно, не мяч, а скорее седло. И на этом седле реализуется геометрия Лобачевского.

О своих открытиях Лобачевский пытался рассказать в 1826 году в Казанском университете. Но текста доклада не сохранилось. В 1829 году он опубликовал статью о своей геометрии в университетском журнале. Результаты Лобачевского многим казались бессмысленными - не только потому, что они разрушали привычную картину мира, но потому, что изложены были не самым понятным образом.

Однако были у Лобачевского публикации и в высокорейтинговых журналах, как мы их сегодня называем. Например, в 1836 году он опубликовал статью под названием «Воображаемая геометрия» на французском в знаменитом журнале Крелля, в одном номере со статьями известнейших математиков того времени - Дирихле, Штейнера и Якоби. А в 1840 году Лобачевский издал небольшую и очень понятно написанную книгу под названием «Геометрические исследования по теории параллельных линий». Книга была на немецком и издана была в Германии. Тут же появилась разгромная рецензия. Рецензент особенно издевался над фразой Лобачевского: «Чем далее продолжаем прямые в сторону их параллелизма, тем больше они приближаются друг к другу». «Одно это высказывание, - писал рецензент, - уже достаточно характеризует сочинение господина Лобачевского и освобождает рецензента от необходимости дальнейшей его оценки».

Но нашелся у книги и один непредвзятый читатель. Это был Карл Фридрих Гаусс, также известный под прозвищем Король Математиков, один из величайших математиков в истории. Он высоко оценил книгу Лобачевского в одном из своих писем. Но его отзыв опубликовали только после его смерти вместе с остальной перепиской. И вот тогда начался настоящий бум геометрии Лобачевского.

В 1866 году его книгу перевели на французский язык, затем на английский. Причем английское издание было переиздано еще три раза из-за необычайной популярности. К сожалению, Лобачевский до этого времени не дожил. Он умер в 1856 году. А в 1868-м появилось русское издание книги Лобачевского. Оно вышло не книгой, а статьей в старейшем российском журнале «Математический сборник». Но тогда этот журнал был совсем молодым, ему не исполнилось еще и двух лет. Но более известен русский перевод 1945 года, выполненный замечательным российским и советским геометром Вениамином Федоровичем Каганом.

К концу XIX века математики разделились на два лагеря. Одни сразу приняли результаты Лобачевского и стали дальше развивать его идеи. А другие так и не смогли отказаться от веры, что геометрия Лобачевского описывает что-то несуществующее, то есть геометрия Евклида единственно верная и ничего другого быть не может. К сожалению, к числу последних относился и математик, больше известный как автор «Алисы в стране чудес», - Льюис Кэрролл. Его настоящее имя Чарльз Доджсон. В 1890 году он опубликовал статью под названием «Новая теория параллельных», где защищал исключительно наглядную версию пятого постулата. Аксиома Льюиса Кэрролла звучит так: если в круг вписать правильный четырехугольник, то площадь этого четырехугольника будет строго больше, чем площадь любого из сегментов круга, лежащих вне четырехугольника. В геометрии Лобачевского эта аксиома неверна. Если мы возьмем достаточно большой круг, то, какой бы четырехугольник мы в него ни вписали, какие бы длинные стороны у этого четырехугольника ни были, площадь четырехугольника будет ограничена универсальной физической постоянной. Вообще наличие физических констант и универсальных мер длины - это выгодное отличие геометрии Лобачевского от геометрии Евклида.

Зато Артур Кэли, другой известный английский математик, в 1859 году, то есть всего через три года после смерти Лобачевского, издал статью, которая впоследствии помогла легализовать постулат Лобачевского. Интересно, что Кэли в это время подрабатывал юристом в Лондоне и лишь потом получил профессорскую позицию в Кембридже. Фактически Кэли построил первую модель геометрии Лобачевского, хотя и решал, на первый взгляд, совсем другую задачу.

А другой замечательный английский математик, которого звали Уильям Кингдон Клиффорд, глубоко проникся идеями Лобачевского. И в частности, он первый высказал идею задолго до создания общей теории относительности, что гравитация вызвана искривлением пространства. Клиффорд так оценил вклад Лобачевского в науку в одной из своих лекций о философии науки: «Лобачевский для Евклида стал тем же, кем Коперник стал для Птолемея». Если до Коперника человечество полагало, что мы знаем о Вселенной все, то теперь нам ясно, что мы наблюдаем лишь небольшую часть Вселенной. Так же и до Лобачевского человечество считало, что есть только одна геометрия - евклидова, о ней все давно известно. Теперь мы знаем, что геометрий много, а знаем мы о них далеко не все.